Skip to contents

This function takes a lavaan model with standardized parameters and simulates latent scores, errors, disturbances, and observed scores.

Usage

sim_standardized(
  m,
  n = 1000,
  observed = TRUE,
  latent = TRUE,
  errors = TRUE,
  factor_scores = FALSE,
  composites = FALSE,
  matrices = FALSE,
  ...
)

Arguments

m

Structural model represented by lavaan syntax

n

Number of simulated cases

observed

Include observed variables

latent

Include latent variables

errors

Include observed error and latent disturbances variables

factor_scores

Include factor score variables

composites

Include composite variables

matrices

Include matrices as attribute of tibble

...

Arguments passed to `simstandardized_matrices`

Value

tibble with standardized data

Details

This function supports the `~` operator for regressions, the `~~` for covariances (but not variances), and the `=~` latent variable loadings. It does not support intercepts (e.g,. `y ~ 1`), thresholds, scaling factors, formative factors, or equality constraints.

Examples

library(simstandard)
# Lavaan model
m = "Latent_1 =~ 0.8 * Ob_1 + 0.7 * Ob_2 + 0.4 * Ob_3"

# simulate 10 cases
sim_standardized(m, n = 10)
#> # A tibble: 10 × 7
#>       Ob_1    Ob_2    Ob_3 Latent_1 e_Ob_1  e_Ob_2 e_Ob_3
#>      <dbl>   <dbl>   <dbl>    <dbl>  <dbl>   <dbl>  <dbl>
#>  1 -0.844   0.178  -2.24   -0.00557 -0.840  0.182  -2.23 
#>  2  0.175   0.647  -1.77   -0.247    0.373  0.820  -1.67 
#>  3  0.357   0.238  -0.256   0.629   -0.147 -0.202  -0.507
#>  4 -0.251  -2.47   -0.276  -1.86     1.24  -1.16    0.470
#>  5 -1.04   -0.677   0.132  -0.914   -0.313 -0.0376  0.498
#>  6  0.871   0.776  -0.901   0.738    0.281  0.259  -1.20 
#>  7  1.12   -0.0808 -0.864  -0.0160   1.13  -0.0696 -0.858
#>  8 -0.355  -0.957   0.928   0.176   -0.496 -1.08    0.857
#>  9  0.0390  1.07    0.0491 -0.134    0.146  1.16    0.103
#> 10 -0.292   0.548   0.140   1.07    -1.15  -0.199  -0.287