# Load packages
library(tidyverse)
# Import data
<- read_csv("https://github.com/wjschne/EDUC5529/raw/master/on_task_multiple_baseline.csv")
d
# View data
dglimpse(d)
View(d)
# Filtering
## Cases with fewer than 8 baseline sessions
%>%
d filter(baseline_sessions_n < 8) %>%
arrange(-baseline_sessions_n)
## Students with `id` equal to 7
%>%
d filter(id == 7)
## Students with scores above 10 on `time_1` AND `time_2`:
%>%
d filter(time_1 > 10 & time_2 > 10)
## Students with scores above 10 on `time_1` OR `time_2`:
%>%
d filter(time_1 > 10 | time_2 > 10)
# Selecting columns
## Select the id and time_1 variables
%>%
d select(id, time_1)
## Select 5 adjacent variables: time_1 throught time_5
%>%
d select(time_1:time_5)
## Remove the id variable
%>%
d select(-id)
## Select all variables that start with "time"
%>%
d select(starts_with("time"))
# Select all variables end with 0:
%>%
d select(ends_with("0"))
# Select all variables that contain "_2"
%>%
d select(contains("_2"))
# Renaming variables
## Rename id to become student_id, rename baseline_sessions_n to baseline
<- d %>%
d_new rename(student_id = id,
baseline = baseline_sessions_n)
## Rename rename all variables that start with "time_"
## so that they start with "T_" instead
%>%
d rename_with(str_replace, pattern = "time_", replace = "T_")
# Make small data
# Select variables from id to time_3 and filter rows so that
# id is less than 3 (not inclusive)
<- d %>%
d_small select(id:time_3) %>%
filter(id < 3)
d_small
# Restructuring from wide to long format:
<- d_small %>%
d_small_longer pivot_longer(cols = time_1:time_3,
names_to = "time",
values_to = "on_task",
names_prefix = "time_",
names_transform = list(time = as.integer))
# Restructing from long to wide format:
%>%
d_small_longer pivot_wider(names_from = time,
values_from = on_task,
names_prefix = "time_")
# Restructure whole data from wide to long and create new variables
<- d %>%
d_longer pivot_longer(cols = time_1:time_60,
names_to = "time",
values_to = "on_task",
names_prefix = "time_",
names_transform = list(time = as.integer)) %>%
mutate(phase = case_when(
<= baseline_sessions_n ~ "Pre-Intervention",
time <= baseline_sessions_n + intervention_sessions_n ~ "Intervention",
time > baseline_sessions_n + intervention_sessions_n ~ "Post-Intervention"
time %>%
)) mutate(phase = fct_inorder(phase))
# Plot
%>%
d_longer mutate(id = factor(id) %>% fct_reorder(baseline_sessions_n)) %>%
ggplot(aes(time, on_task)) +
geom_line(aes(group = id, color = phase)) +
facet_grid(rows = vars(id))
Getting Used to Working with Data in R
In programs like SPSS, the data seem to live in a spreadsheet that is always open and available to you. In R, you can see the data whenever you want, but usually it sits unseen inside a variable. It can be disconcerting at first, but think of your data as living in a file somewhere on your hard drive (or online!), and then the data just come for a short visit in R.
The major benefit of working with data in R is that all of the changes, transformations, and restructuring happens in code—which can be recreated at any time. There is usually no need to “save” the data after you have transformed it. The next time you work with the data, you just run your code and all the calculations will transform the data exactly the same way as before.
Why does this matter? If you feel the need to save your data all the time, you end of having multiple copies of it: data.sav
, data_restructured.sav
, data_new.sav
, data_new_final.sav
, fixed_data_new_final.sav
, restructued_final_with_missing_cases_removed.sav
, and so forth and so on. It can be hard to figure out where to start the next time you work with your data. You might not remember which version has errors and which version has what you need.
In general, start with a completely raw data file (one that is exactly the way you started). Resist the temptation to make any changes to it directly. If you must, save a pristine copy somewhere and only then change it. Import your data and make all changes to it with code. One benefit of doing so is that the code documents any changes you would otherwise need to record in your lab notebook.
All the code in one place:
I am going to walk through these steps. You can run this all at once to make sure it works. Then I will explain it step by step.
Importing Data from a file
For this task we will use a file that lives here on the web:
You can download it if you want, but you do not need to. You can import it over the web right into R.
We have a .csv file, so we will use the tidyverse function read_csv
, from the readr package, which can be loaded with the tidyverse package:
library(tidyverse)
<- read_csv("https://github.com/wjschne/EDUC5529/raw/master/on_task_multiple_baseline.csv") d
Note that we have to assign the data to a variable—d
in this case. Otherwise, the data will spill into the console, but R will not remember the data.
Inspecting Data
The read_csv
function imports a special data structure called a tibble
which is a variation on the traditional data.frame
structure. It has some useful defaults that make working with it more predictable and practical.
If the data is too big to print in your console, the tibble will just show the first few rows, the first few columns, and then the remaining column names. It all says what kind of data is in each column and how many rows and columns are in the data.
Whoa! That dataset has a lot of variables! When the there are more variables than rows, we say that the data is “wide.”
An alternate way to view the data is to use the glimpse
function:
glimpse(d)
If you really need to see all the data, use the View
function:
View(d)
d
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
3 | 5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
4 | 32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
5 | 19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
6 | 24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
7 | 10 | 19 | 9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
8 | 13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
Study Design
This dataset has 8 children, one in each row. Each child was given an intervention designed to increase “time on task” in the classroom so that the child will stay focused and complete his or her work. The study has a multiple baseline design. That is, each child was observed for a “baseline” period for a number days before the intervention was implemented. Each child’s baseline lasted a different length of time. Some children were observed for a short time before the intervention, and some were observed much longer. After the intervention ended, each child was observed for a number of days to see if the intervention’s effect diminished.
The id
column is just a number to identify each child. The baseline_sessions_n
variable indicates how many days the child was observed before the intervention began. The intervention_sessions_n
variable indications the number days the intervention lasted. The remainding variables time_1
–time_60
are the number of minutes the child stayed on task during the observation period each day for 60 days.
Tidy Data
You might think that the data is ready to be analyzed, but it isn’t. The data might be perfectly structured for data entry, but it is not quite “tidy” yet.
The phrase tidy data was popularized by Hadley Wickham, but it mostly refers to something a little less catchy called database normalization. In data analysis, we want:
- Each variable must have its own column.
- Each observation must have its own row.
- Each value must have its own cell.
—From Wickham & Grolemund (2017):
This is how R likes its data. Whenever you find yourself fighting with confusing or tedious tasks in R, there is a good chance your data has violated one of these rules. Converting your data to this “tidy” format will likely simplify your task.
In the current data, there are two primary sources of untidiness.
- We need a single variable to indicate “time on task.” Unfortunately, the
time on task
variable we would like to have is currently spread across 60 variables,time_1
–time_60
. - We also would like a variable called “time” to indicate which day the observation took place. Right now, the time variable is lurking in the column names
time_1
–time_60
Later we need to identify which treatment phase the observation was conducted in, “pre-intervention,” “intervention,” or “post-intervention.” That information is sitting in an unusual form right right now in the baseline_sessions_n
and intervention_session_n
variables.
Data Filtering
The filter
function selects rows that meet certain conditions. For example, suppose we want to see rows with baseline_sessions_n
less than 8:
The %>%
is the “pipe” function. It means “and then.” It inserts the output of the previous function into the next function. If we did not use the pipe, we would type filter(d, baseline_sessions_n < 8)
instead.
%>%
d filter(baseline_sessions_n < 8)
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 5 | 18 | 7.244 | 14.31 | 7.979 | 11.18 | 12.29 | 13.15 | 11.69 | 19 | 16.13 | 20.3 | 21.91 | 21.95 | 27.11 | 27.93 | 27.45 | 30.75 | 36.69 | 37.34 | 39.2 | 43.84 | 44.75 | 43.36 | 46.34 | 47.01 | 44.5 | 46.51 | 44.03 | 47.02 | 48.69 | 43.65 | 47.7 | 49.48 | 48 | 46.17 | 48.51 | 43.8 | 48.55 | 48.3 | 43.9 | 47.1 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.6 | 44.57 | 42.6 | 47.05 | 46.58 | 43.5 | 42.45 | 47.22 | 44.16 | 49.38 | 45 | 46.11 | 47.09 | 44.92 |
In this example, there is little advantage to using the pipe because there is only one step. However, when many steps are strung together, the pipe makes the code much easier to understand.
The double equal sign ==
performs a test to see if two things are the same. Forgetting that you need two equal signs is a really common error.
Students with id
equal to 7:
%>%
d filter(id == 7)
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 10 | 19 | 9.695 | 9.174 | 10.64 | 9.136 | 7.362 | 14.27 | 9.448 | 12.38 | 6.093 | 5.854 | 9.539 | 14.26 | 13.73 | 19.42 | 20.67 | 22.58 | 26.74 | 24.73 | 28.85 | 30.76 | 31.63 | 34.36 | 36.1 | 40.92 | 39.43 | 41.14 | 43.05 | 46.76 | 46.2 | 48.77 | 47.37 | 49.48 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.1 | 48.02 | 47.5 | 49.15 | 49 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
You can filter for more than one condition.
Students with scores above 10 on time_1
AND time_2
:
%>%
d filter(time_1 > 10 & time_2 > 10)
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.48 | 14.40 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.89 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
4 | 32 | 20 | 11.30 | 14.31 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.80 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
8 | 13 | 20 | 10.60 | 11.75 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.58 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
Students with scores above 10 on time_1
OR time_2
:
%>%
d filter(time_1 > 10 | time_2 > 10)
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
3 | 5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
4 | 32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
5 | 19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
6 | 24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
8 | 13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
Column selection
We can select columns by naming just the columns we want:
%>%
d select(id, time_1)
id | time_1 |
---|---|
1 | 11.481 |
2 | 9.114 |
3 | 7.244 |
4 | 11.297 |
5 | 10.667 |
6 | 13.027 |
7 | 9.695 |
8 | 10.596 |
If the columns we want are adjacent, we can use the :
operator to select a sequence:
%>%
d select(time_1:time_5)
time_1 | time_2 | time_3 | time_4 | time_5 |
---|---|---|---|---|
11.481 | 14.402 | 6.151 | 9.254 | 9.580 |
9.114 | 8.586 | 11.010 | 9.356 | 8.095 |
7.244 | 14.309 | 7.979 | 11.175 | 12.287 |
11.297 | 14.307 | 14.811 | 8.678 | 9.533 |
10.667 | 6.804 | 8.303 | 14.498 | 6.868 |
13.027 | 7.471 | 13.680 | 5.769 | 10.789 |
9.695 | 9.174 | 10.637 | 9.136 | 7.362 |
10.596 | 11.746 | 10.903 | 11.403 | 8.263 |
If want everything but a particular column (or columns), use the -
operator:
%>%
d select(-id)
baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
18 | 19 | 9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
10 | 19 | 9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
If columns have similar names, we can use the starts_with
, ends_width
, or contains
functions.
Select all variables that start with the phrase time
:
%>%
d select(starts_with("time"))
time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
Select all variables end with 0
:
%>%
d select(ends_with("0"))
time_10 | time_20 | time_30 | time_40 | time_50 | time_60 |
---|---|---|---|---|---|
10.838 | 11.47 | 30.187 | 44.61 | 48.72 | 50.03 |
7.590 | 14.83 | 34.848 | 47.54 | 43.74 | 50.35 |
20.296 | 43.84 | 43.648 | 47.10 | 47.05 | 44.92 |
8.244 | 10.52 | 8.553 | 27.08 | 45.51 | 50.34 |
14.305 | 14.45 | 31.427 | 50.29 | 47.01 | 50.77 |
9.967 | 9.09 | 21.528 | 41.40 | 48.08 | 48.74 |
5.854 | 30.76 | 48.769 | 49.10 | 45.44 | 52.76 |
10.105 | 25.97 | 42.504 | 48.40 | 45.58 | 50.32 |
Select all variables that contain the phrase “_2”
%>%
d select(contains("_2"))
time_2 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 |
---|---|---|---|---|---|---|---|---|---|---|
14.402 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 |
8.586 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 |
14.309 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 |
14.307 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 |
6.804 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 |
7.471 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 |
9.174 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 |
11.746 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 |
The -
operator works with these selection functions to exclude variables:
%>%
d select(-contains("time_"))
id | baseline_sessions_n | intervention_sessions_n |
---|---|---|
1 | 22 | 20 |
2 | 18 | 19 |
3 | 5 | 18 |
4 | 32 | 20 |
5 | 19 | 20 |
6 | 24 | 20 |
7 | 10 | 19 |
8 | 13 | 20 |
Renaming variables
%>%
d rename(student_id = id,
baseline = baseline_sessions_n)
student_id | baseline | intervention_sessions_n | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
3 | 5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
4 | 32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
5 | 19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
6 | 24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
7 | 10 | 19 | 9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
8 | 13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
We can rename many columns at once with a function. The str_replace
function usually works like this:
<- "time_1"
x str_replace(x, pattern = "time_", replace = "Time ")
[1] "Time 1"
The rename_with
is a function that applies a function to all variable names at once. It can take that function’s arguments, too. For example,
%>% rename_with(str_replace, pattern = "time_", replace = "Time ") d
id | baseline_sessions_n | intervention_sessions_n | Time 1 | Time 2 | Time 3 | Time 4 | Time 5 | Time 6 | Time 7 | Time 8 | Time 9 | Time 10 | Time 11 | Time 12 | Time 13 | Time 14 | Time 15 | Time 16 | Time 17 | Time 18 | Time 19 | Time 20 | Time 21 | Time 22 | Time 23 | Time 24 | Time 25 | Time 26 | Time 27 | Time 28 | Time 29 | Time 30 | Time 31 | Time 32 | Time 33 | Time 34 | Time 35 | Time 36 | Time 37 | Time 38 | Time 39 | Time 40 | Time 41 | Time 42 | Time 43 | Time 44 | Time 45 | Time 46 | Time 47 | Time 48 | Time 49 | Time 50 | Time 51 | Time 52 | Time 53 | Time 54 | Time 55 | Time 56 | Time 57 | Time 58 | Time 59 | Time 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
3 | 5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
4 | 32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
5 | 19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
6 | 24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
7 | 10 | 19 | 9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
8 | 13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
If you have a vector with names in it you can rename many variables at once:
<- c(ID = "id",
v_names Baseline = "baseline_sessions_n",
Intervention = "intervention_sessions_n")
%>%
d rename(any_of(v_names))
ID | Baseline | Intervention | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
3 | 5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
4 | 32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
5 | 19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
6 | 24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
7 | 10 | 19 | 9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
8 | 13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
In this example, there is no advantage over just applying the transformations directly in rename
:
%>%
d rename(ID = "id",
Baseline = "baseline_sessions_n",
Intervention = "intervention_sessions_n")
ID | Baseline | Intervention | time_1 | time_2 | time_3 | time_4 | time_5 | time_6 | time_7 | time_8 | time_9 | time_10 | time_11 | time_12 | time_13 | time_14 | time_15 | time_16 | time_17 | time_18 | time_19 | time_20 | time_21 | time_22 | time_23 | time_24 | time_25 | time_26 | time_27 | time_28 | time_29 | time_30 | time_31 | time_32 | time_33 | time_34 | time_35 | time_36 | time_37 | time_38 | time_39 | time_40 | time_41 | time_42 | time_43 | time_44 | time_45 | time_46 | time_47 | time_48 | time_49 | time_50 | time_51 | time_52 | time_53 | time_54 | time_55 | time_56 | time_57 | time_58 | time_59 | time_60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 | 9.254 | 9.580 | 8.160 | 10.125 | 11.120 | 9.203 | 10.838 | 9.181 | 8.436 | 9.977 | 13.242 | 9.317 | 8.276 | 9.208 | 10.888 | 7.225 | 11.47 | 8.570 | 10.583 | 11.04 | 13.13 | 18.00 | 12.965 | 23.840 | 21.40 | 22.653 | 30.187 | 29.49 | 31.359 | 29.32 | 33.78 | 38.95 | 37.28 | 42.57 | 37.73 | 44.34 | 44.61 | 49.51 | 49.60 | 48.72 | 50.88 | 51.23 | 49.04 | 51.27 | 49.00 | 51.13 | 48.72 | 50.64 | 51.24 | 54.46 | 48.84 | 50.35 | 54.54 | 52.77 | 50.68 | 50.18 | 50.03 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 | 9.356 | 8.095 | 8.772 | 8.953 | 7.443 | 11.057 | 7.590 | 11.087 | 10.670 | 7.843 | 9.018 | 11.266 | 5.886 | 7.388 | 8.107 | 12.111 | 14.83 | 13.107 | 18.156 | 21.65 | 22.82 | 24.85 | 25.152 | 29.230 | 31.50 | 30.092 | 34.848 | 29.83 | 42.884 | 40.94 | 45.12 | 48.62 | 48.63 | 47.46 | 47.03 | 48.66 | 47.54 | 50.80 | 50.58 | 49.93 | 48.24 | 49.41 | 48.22 | 47.98 | 47.59 | 44.75 | 43.74 | 49.15 | 48.02 | 44.89 | 48.28 | 47.23 | 48.91 | 44.84 | 45.47 | 49.48 | 50.35 |
3 | 5 | 18 | 7.244 | 14.309 | 7.979 | 11.175 | 12.287 | 13.146 | 11.694 | 18.998 | 16.125 | 20.296 | 21.905 | 21.952 | 27.114 | 27.933 | 27.448 | 30.747 | 36.685 | 37.337 | 39.197 | 43.84 | 44.752 | 43.358 | 46.34 | 47.01 | 44.50 | 46.507 | 44.034 | 47.02 | 48.691 | 43.648 | 47.70 | 49.477 | 48.00 | 46.17 | 48.51 | 43.80 | 48.55 | 48.30 | 43.90 | 47.10 | 51.74 | 40.91 | 45.88 | 49.41 | 45.65 | 43.96 | 46.60 | 44.57 | 42.60 | 47.05 | 46.58 | 43.50 | 42.45 | 47.22 | 44.16 | 49.38 | 45.00 | 46.11 | 47.09 | 44.92 |
4 | 32 | 20 | 11.297 | 14.307 | 14.811 | 8.678 | 9.533 | 7.823 | 9.561 | 8.209 | 12.898 | 8.244 | 8.548 | 8.616 | 7.586 | 8.921 | 9.199 | 8.711 | 11.026 | 10.804 | 11.591 | 10.52 | 9.027 | 7.848 | 12.32 | 10.07 | 12.20 | 7.872 | 8.831 | 10.43 | 8.886 | 8.553 | 11.84 | 7.608 | 11.14 | 13.53 | 14.89 | 19.39 | 22.95 | 23.99 | 20.03 | 27.08 | 28.21 | 27.32 | 34.87 | 33.65 | 36.78 | 37.48 | 40.53 | 41.81 | 40.75 | 45.51 | 45.75 | 47.57 | 56.03 | 51.27 | 51.98 | 47.75 | 48.65 | 50.63 | 48.45 | 50.34 |
5 | 19 | 20 | 10.667 | 6.804 | 8.303 | 14.498 | 6.868 | 12.367 | 9.414 | 9.444 | 8.745 | 14.305 | 10.961 | 10.451 | 14.828 | 6.272 | 10.096 | 12.403 | 8.464 | 8.629 | 9.839 | 14.45 | 13.049 | 16.131 | 18.19 | 17.92 | 23.90 | 22.576 | 23.059 | 25.57 | 29.038 | 31.427 | 33.96 | 36.342 | 38.47 | 41.44 | 40.76 | 44.75 | 47.46 | 48.82 | 52.24 | 50.29 | 51.08 | 48.52 | 51.01 | 49.59 | 50.64 | 47.94 | 45.46 | 52.18 | 48.01 | 47.01 | 50.80 | 47.71 | 54.90 | 49.21 | 52.97 | 51.58 | 47.75 | 53.56 | 48.21 | 50.77 |
6 | 24 | 20 | 13.027 | 7.471 | 13.680 | 5.769 | 10.789 | 8.699 | 9.323 | 8.312 | 12.865 | 9.967 | 6.926 | 7.546 | 10.175 | 12.912 | 5.829 | 8.554 | 10.514 | 12.225 | 9.299 | 9.09 | 9.931 | 10.490 | 12.35 | 11.75 | 10.45 | 13.391 | 16.231 | 16.95 | 21.799 | 21.528 | 21.88 | 25.989 | 26.67 | 32.07 | 32.79 | 35.02 | 37.48 | 32.87 | 35.37 | 41.40 | 46.80 | 49.06 | 46.94 | 50.27 | 54.22 | 50.03 | 51.80 | 49.74 | 48.78 | 48.08 | 48.62 | 48.07 | 48.06 | 46.87 | 50.26 | 44.34 | 51.32 | 48.04 | 54.79 | 48.74 |
7 | 10 | 19 | 9.695 | 9.174 | 10.637 | 9.136 | 7.362 | 14.267 | 9.448 | 12.378 | 6.093 | 5.854 | 9.539 | 14.262 | 13.727 | 19.425 | 20.669 | 22.576 | 26.741 | 24.729 | 28.852 | 30.76 | 31.628 | 34.361 | 36.10 | 40.92 | 39.43 | 41.137 | 43.049 | 46.76 | 46.199 | 48.769 | 47.37 | 49.477 | 52.47 | 49.37 | 44.54 | 48.07 | 46.38 | 47.66 | 45.35 | 49.10 | 48.02 | 47.50 | 49.15 | 49.00 | 47.31 | 46.44 | 49.66 | 48.07 | 46.29 | 45.44 | 48.75 | 49.89 | 49.42 | 48.00 | 50.41 | 46.83 | 46.45 | 48.05 | 48.95 | 52.76 |
8 | 13 | 20 | 10.596 | 11.746 | 10.903 | 11.403 | 8.263 | 7.589 | 8.232 | 7.295 | 10.028 | 10.105 | 9.797 | 11.889 | 7.041 | 12.705 | 13.626 | 14.990 | 19.614 | 23.575 | 22.594 | 25.97 | 26.860 | 30.064 | 29.59 | 31.23 | 34.26 | 36.188 | 38.330 | 42.61 | 43.275 | 42.504 | 42.51 | 51.437 | 53.72 | 50.31 | 48.79 | 51.41 | 53.23 | 50.96 | 53.23 | 48.40 | 48.72 | 50.48 | 51.48 | 50.61 | 48.03 | 50.54 | 50.11 | 49.69 | 50.82 | 45.58 | 50.14 | 49.66 | 47.79 | 49.99 | 52.47 | 50.68 | 49.15 | 51.39 | 47.67 | 50.32 |
The reason one might use the named-vector method is that one already has the named vector handy, and retyping it would be an error-prone waste of time.
Data Restructuring
We need to make our wide data long. To make the illustration simple to see, let’s make a smaller version of the data. We will select just times 1–3 for the first 2 children:
<- d %>%
d_small select(id:time_3) %>%
filter(id < 3)
Breaking down each step, the code above does these three things:
- Create a new tibble called
d_small
starting with the tibbled
“and then” (i..e,%>%
)… select
variablesid
throughtime_3
“and then”…filter
the rows to find only the cases in which id is less than 3.
Let’s display d_small
:
d_small
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 |
---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 |
What we need is:
id | baseline_sessions_n | intervention_sessions_n | time | on_task |
---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 |
1 | 22 | 20 | 2 | 14.402 |
1 | 22 | 20 | 3 | 6.151 |
2 | 18 | 19 | 1 | 9.114 |
2 | 18 | 19 | 2 | 8.586 |
2 | 18 | 19 | 3 | 11.010 |
Restructuring from wide to long format with pivot_longer
Use the pivot_longer
function to pivot the three time variables to long format:
%>%
d_small pivot_longer(cols = time_1:time_3)
id | baseline_sessions_n | intervention_sessions_n | name | value |
---|---|---|---|---|
1 | 22 | 20 | time_1 | 11.481 |
1 | 22 | 20 | time_2 | 14.402 |
1 | 22 | 20 | time_3 | 6.151 |
2 | 18 | 19 | time_1 | 9.114 |
2 | 18 | 19 | time_2 | 8.586 |
2 | 18 | 19 | time_3 | 11.010 |
To avoid the hassle of renaming our columns, we can specify what the name
and value
columns should be called:
%>%
d_small pivot_longer(cols = time_1:time_3,
names_to = "time",
values_to = "on_task")
id | baseline_sessions_n | intervention_sessions_n | time | on_task |
---|---|---|---|---|
1 | 22 | 20 | time_1 | 11.481 |
1 | 22 | 20 | time_2 | 14.402 |
1 | 22 | 20 | time_3 | 6.151 |
2 | 18 | 19 | time_1 | 9.114 |
2 | 18 | 19 | time_2 | 8.586 |
2 | 18 | 19 | time_3 | 11.010 |
Notice that the time
variable is text, not a number, like we want. There are many ways to get rid of the prefix. The simplest is to tell pivot_longer
to strip away the prefix “time_”.
%>%
d_small pivot_longer(cols = time_1:time_3,
names_to = "time",
values_to = "on_task",
names_prefix = "time_")
id | baseline_sessions_n | intervention_sessions_n | time | on_task |
---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 |
1 | 22 | 20 | 2 | 14.402 |
1 | 22 | 20 | 3 | 6.151 |
2 | 18 | 19 | 1 | 9.114 |
2 | 18 | 19 | 2 | 8.586 |
2 | 18 | 19 | 3 | 11.010 |
Unfortunately, R thinks that time
is a text variable. We want it to be an integer, so we transform it using the as.integer
function:
%>%
d_small pivot_longer(cols = time_1:time_3,
names_to = "time",
values_to = "on_task",
names_prefix = "time_",
names_transform = list(time = as.integer))
id | baseline_sessions_n | intervention_sessions_n | time | on_task |
---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 |
1 | 22 | 20 | 2 | 14.402 |
1 | 22 | 20 | 3 | 6.151 |
2 | 18 | 19 | 1 | 9.114 |
2 | 18 | 19 | 2 | 8.586 |
2 | 18 | 19 | 3 | 11.010 |
Alternatively, we can do all these transformations after pivoting:
%>%
d_small pivot_longer(cols = time_1:time_3,
names_to = "time",
values_to = "on_task") %>%
mutate(time = str_remove(time, "time_") %>%
as.integer())
id | baseline_sessions_n | intervention_sessions_n | time | on_task |
---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 |
1 | 22 | 20 | 2 | 14.402 |
1 | 22 | 20 | 3 | 6.151 |
2 | 18 | 19 | 1 | 9.114 |
2 | 18 | 19 | 2 | 8.586 |
2 | 18 | 19 | 3 | 11.010 |
Restructuring from long to wide format with pivot_wider
Let’s pivot the data from long format to wide. First let’s assign the restructured d_small
data as d_small_longer
:
<- d_small %>%
d_small_longer pivot_longer(cols = time_1:time_3,
names_to = "time",
values_to = "on_task",
names_prefix = "time_",
names_transform = list(time = as.integer))
Now let’s move it back to where it was with pivot_wider
:
%>%
d_small_longer pivot_wider(names_from = time,
values_from = on_task,
names_prefix = "time_")
id | baseline_sessions_n | intervention_sessions_n | time_1 | time_2 | time_3 |
---|---|---|---|---|---|
1 | 22 | 20 | 11.481 | 14.402 | 6.151 |
2 | 18 | 19 | 9.114 | 8.586 | 11.010 |
Perfect! Now lets move back to the the original large tibble d
.
Create new variables with mutate
and case_when
First, let’s pivot the entire data and assign it to d_longer
. We need to select time_1
–time_60
:
<- d %>%
d_longer pivot_longer(cols = time_1:time_60,
names_to = "time",
values_to = "on_task",
names_prefix = "time_",
names_transform = list(time = as.integer))
To create a new variable in d_longer
, we “mutate” the tibble. For example, if we want to add 1 to on_task
,
%>%
d_longer mutate(ontask_plus_1 = on_task + 1)
id | baseline_sessions_n | intervention_sessions_n | time | on_task | ontask_plus_1 |
---|---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 | 12.481 |
1 | 22 | 20 | 2 | 14.402 | 15.402 |
1 | 22 | 20 | 3 | 6.151 | 7.151 |
1 | 22 | 20 | 4 | 9.254 | 10.254 |
1 | 22 | 20 | 5 | 9.580 | 10.580 |
1 | 22 | 20 | 6 | 8.160 | 9.160 |
1 | 22 | 20 | 7 | 10.125 | 11.125 |
1 | 22 | 20 | 8 | 11.120 | 12.120 |
1 | 22 | 20 | 9 | 9.203 | 10.203 |
1 | 22 | 20 | 10 | 10.838 | 11.838 |
1 | 22 | 20 | 11 | 9.181 | 10.181 |
1 | 22 | 20 | 12 | 8.436 | 9.436 |
1 | 22 | 20 | 13 | 9.977 | 10.977 |
1 | 22 | 20 | 14 | 13.242 | 14.242 |
1 | 22 | 20 | 15 | 9.317 | 10.317 |
1 | 22 | 20 | 16 | 8.276 | 9.276 |
1 | 22 | 20 | 17 | 9.208 | 10.208 |
1 | 22 | 20 | 18 | 10.888 | 11.888 |
1 | 22 | 20 | 19 | 7.225 | 8.225 |
1 | 22 | 20 | 20 | 11.472 | 12.472 |
1 | 22 | 20 | 21 | 8.570 | 9.570 |
1 | 22 | 20 | 22 | 10.583 | 11.583 |
1 | 22 | 20 | 23 | 11.038 | 12.038 |
1 | 22 | 20 | 24 | 13.126 | 14.126 |
1 | 22 | 20 | 25 | 17.995 | 18.995 |
1 | 22 | 20 | 26 | 12.965 | 13.965 |
1 | 22 | 20 | 27 | 23.840 | 24.840 |
1 | 22 | 20 | 28 | 21.396 | 22.396 |
1 | 22 | 20 | 29 | 22.653 | 23.653 |
1 | 22 | 20 | 30 | 30.187 | 31.187 |
1 | 22 | 20 | 31 | 29.494 | 30.494 |
1 | 22 | 20 | 32 | 31.359 | 32.359 |
1 | 22 | 20 | 33 | 29.316 | 30.316 |
1 | 22 | 20 | 34 | 33.783 | 34.783 |
1 | 22 | 20 | 35 | 38.945 | 39.945 |
1 | 22 | 20 | 36 | 37.283 | 38.283 |
1 | 22 | 20 | 37 | 42.568 | 43.568 |
1 | 22 | 20 | 38 | 37.734 | 38.734 |
1 | 22 | 20 | 39 | 44.345 | 45.345 |
1 | 22 | 20 | 40 | 44.606 | 45.606 |
1 | 22 | 20 | 41 | 49.511 | 50.511 |
1 | 22 | 20 | 42 | 49.604 | 50.604 |
1 | 22 | 20 | 43 | 48.723 | 49.723 |
1 | 22 | 20 | 44 | 50.882 | 51.882 |
1 | 22 | 20 | 45 | 51.230 | 52.230 |
1 | 22 | 20 | 46 | 49.038 | 50.038 |
1 | 22 | 20 | 47 | 51.275 | 52.275 |
1 | 22 | 20 | 48 | 49.000 | 50.000 |
1 | 22 | 20 | 49 | 51.135 | 52.135 |
1 | 22 | 20 | 50 | 48.722 | 49.722 |
1 | 22 | 20 | 51 | 50.638 | 51.638 |
1 | 22 | 20 | 52 | 51.235 | 52.235 |
1 | 22 | 20 | 53 | 54.457 | 55.457 |
1 | 22 | 20 | 54 | 48.840 | 49.840 |
1 | 22 | 20 | 55 | 50.354 | 51.354 |
1 | 22 | 20 | 56 | 54.538 | 55.538 |
1 | 22 | 20 | 57 | 52.765 | 53.765 |
1 | 22 | 20 | 58 | 50.677 | 51.677 |
1 | 22 | 20 | 59 | 50.179 | 51.179 |
1 | 22 | 20 | 60 | 50.030 | 51.030 |
2 | 18 | 19 | 1 | 9.114 | 10.114 |
2 | 18 | 19 | 2 | 8.586 | 9.586 |
2 | 18 | 19 | 3 | 11.010 | 12.010 |
2 | 18 | 19 | 4 | 9.356 | 10.356 |
2 | 18 | 19 | 5 | 8.095 | 9.095 |
2 | 18 | 19 | 6 | 8.772 | 9.772 |
2 | 18 | 19 | 7 | 8.953 | 9.953 |
2 | 18 | 19 | 8 | 7.443 | 8.443 |
2 | 18 | 19 | 9 | 11.057 | 12.057 |
2 | 18 | 19 | 10 | 7.590 | 8.590 |
2 | 18 | 19 | 11 | 11.087 | 12.087 |
2 | 18 | 19 | 12 | 10.670 | 11.670 |
2 | 18 | 19 | 13 | 7.843 | 8.843 |
2 | 18 | 19 | 14 | 9.018 | 10.018 |
2 | 18 | 19 | 15 | 11.266 | 12.266 |
2 | 18 | 19 | 16 | 5.886 | 6.886 |
2 | 18 | 19 | 17 | 7.388 | 8.388 |
2 | 18 | 19 | 18 | 8.107 | 9.107 |
2 | 18 | 19 | 19 | 12.111 | 13.111 |
2 | 18 | 19 | 20 | 14.825 | 15.825 |
2 | 18 | 19 | 21 | 13.107 | 14.107 |
2 | 18 | 19 | 22 | 18.156 | 19.156 |
2 | 18 | 19 | 23 | 21.652 | 22.652 |
2 | 18 | 19 | 24 | 22.819 | 23.819 |
2 | 18 | 19 | 25 | 24.846 | 25.846 |
2 | 18 | 19 | 26 | 25.152 | 26.152 |
2 | 18 | 19 | 27 | 29.230 | 30.230 |
2 | 18 | 19 | 28 | 31.499 | 32.499 |
2 | 18 | 19 | 29 | 30.092 | 31.092 |
2 | 18 | 19 | 30 | 34.848 | 35.848 |
2 | 18 | 19 | 31 | 29.831 | 30.831 |
2 | 18 | 19 | 32 | 42.884 | 43.884 |
2 | 18 | 19 | 33 | 40.936 | 41.936 |
2 | 18 | 19 | 34 | 45.121 | 46.121 |
2 | 18 | 19 | 35 | 48.622 | 49.622 |
2 | 18 | 19 | 36 | 48.627 | 49.627 |
2 | 18 | 19 | 37 | 47.455 | 48.455 |
2 | 18 | 19 | 38 | 47.031 | 48.031 |
2 | 18 | 19 | 39 | 48.660 | 49.660 |
2 | 18 | 19 | 40 | 47.544 | 48.544 |
2 | 18 | 19 | 41 | 50.799 | 51.799 |
2 | 18 | 19 | 42 | 50.576 | 51.576 |
2 | 18 | 19 | 43 | 49.929 | 50.929 |
2 | 18 | 19 | 44 | 48.240 | 49.240 |
2 | 18 | 19 | 45 | 49.406 | 50.406 |
2 | 18 | 19 | 46 | 48.225 | 49.225 |
2 | 18 | 19 | 47 | 47.975 | 48.975 |
2 | 18 | 19 | 48 | 47.588 | 48.588 |
2 | 18 | 19 | 49 | 44.746 | 45.746 |
2 | 18 | 19 | 50 | 43.743 | 44.743 |
2 | 18 | 19 | 51 | 49.148 | 50.148 |
2 | 18 | 19 | 52 | 48.024 | 49.024 |
2 | 18 | 19 | 53 | 44.893 | 45.893 |
2 | 18 | 19 | 54 | 48.279 | 49.279 |
2 | 18 | 19 | 55 | 47.229 | 48.229 |
2 | 18 | 19 | 56 | 48.910 | 49.910 |
2 | 18 | 19 | 57 | 44.843 | 45.843 |
2 | 18 | 19 | 58 | 45.472 | 46.472 |
2 | 18 | 19 | 59 | 49.480 | 50.480 |
2 | 18 | 19 | 60 | 50.346 | 51.346 |
3 | 5 | 18 | 1 | 7.244 | 8.244 |
3 | 5 | 18 | 2 | 14.309 | 15.309 |
3 | 5 | 18 | 3 | 7.979 | 8.979 |
3 | 5 | 18 | 4 | 11.175 | 12.175 |
3 | 5 | 18 | 5 | 12.287 | 13.287 |
3 | 5 | 18 | 6 | 13.146 | 14.146 |
3 | 5 | 18 | 7 | 11.694 | 12.694 |
3 | 5 | 18 | 8 | 18.998 | 19.998 |
3 | 5 | 18 | 9 | 16.125 | 17.125 |
3 | 5 | 18 | 10 | 20.296 | 21.296 |
3 | 5 | 18 | 11 | 21.905 | 22.905 |
3 | 5 | 18 | 12 | 21.952 | 22.952 |
3 | 5 | 18 | 13 | 27.114 | 28.114 |
3 | 5 | 18 | 14 | 27.933 | 28.933 |
3 | 5 | 18 | 15 | 27.448 | 28.448 |
3 | 5 | 18 | 16 | 30.747 | 31.747 |
3 | 5 | 18 | 17 | 36.685 | 37.685 |
3 | 5 | 18 | 18 | 37.337 | 38.337 |
3 | 5 | 18 | 19 | 39.197 | 40.197 |
3 | 5 | 18 | 20 | 43.845 | 44.845 |
3 | 5 | 18 | 21 | 44.752 | 45.752 |
3 | 5 | 18 | 22 | 43.358 | 44.358 |
3 | 5 | 18 | 23 | 46.341 | 47.341 |
3 | 5 | 18 | 24 | 47.006 | 48.006 |
3 | 5 | 18 | 25 | 44.497 | 45.497 |
3 | 5 | 18 | 26 | 46.507 | 47.507 |
3 | 5 | 18 | 27 | 44.034 | 45.034 |
3 | 5 | 18 | 28 | 47.017 | 48.017 |
3 | 5 | 18 | 29 | 48.691 | 49.691 |
3 | 5 | 18 | 30 | 43.648 | 44.648 |
3 | 5 | 18 | 31 | 47.700 | 48.700 |
3 | 5 | 18 | 32 | 49.477 | 50.477 |
3 | 5 | 18 | 33 | 48.000 | 49.000 |
3 | 5 | 18 | 34 | 46.173 | 47.173 |
3 | 5 | 18 | 35 | 48.513 | 49.513 |
3 | 5 | 18 | 36 | 43.801 | 44.801 |
3 | 5 | 18 | 37 | 48.552 | 49.552 |
3 | 5 | 18 | 38 | 48.298 | 49.298 |
3 | 5 | 18 | 39 | 43.902 | 44.902 |
3 | 5 | 18 | 40 | 47.103 | 48.103 |
3 | 5 | 18 | 41 | 51.735 | 52.735 |
3 | 5 | 18 | 42 | 40.911 | 41.911 |
3 | 5 | 18 | 43 | 45.881 | 46.881 |
3 | 5 | 18 | 44 | 49.407 | 50.407 |
3 | 5 | 18 | 45 | 45.653 | 46.653 |
3 | 5 | 18 | 46 | 43.964 | 44.964 |
3 | 5 | 18 | 47 | 46.602 | 47.602 |
3 | 5 | 18 | 48 | 44.568 | 45.568 |
3 | 5 | 18 | 49 | 42.596 | 43.596 |
3 | 5 | 18 | 50 | 47.055 | 48.055 |
3 | 5 | 18 | 51 | 46.582 | 47.582 |
3 | 5 | 18 | 52 | 43.501 | 44.501 |
3 | 5 | 18 | 53 | 42.446 | 43.446 |
3 | 5 | 18 | 54 | 47.222 | 48.222 |
3 | 5 | 18 | 55 | 44.163 | 45.163 |
3 | 5 | 18 | 56 | 49.381 | 50.381 |
3 | 5 | 18 | 57 | 44.999 | 45.999 |
3 | 5 | 18 | 58 | 46.108 | 47.108 |
3 | 5 | 18 | 59 | 47.088 | 48.088 |
3 | 5 | 18 | 60 | 44.919 | 45.919 |
4 | 32 | 20 | 1 | 11.297 | 12.297 |
4 | 32 | 20 | 2 | 14.307 | 15.307 |
4 | 32 | 20 | 3 | 14.811 | 15.811 |
4 | 32 | 20 | 4 | 8.678 | 9.678 |
4 | 32 | 20 | 5 | 9.533 | 10.533 |
4 | 32 | 20 | 6 | 7.823 | 8.823 |
4 | 32 | 20 | 7 | 9.561 | 10.561 |
4 | 32 | 20 | 8 | 8.209 | 9.209 |
4 | 32 | 20 | 9 | 12.898 | 13.898 |
4 | 32 | 20 | 10 | 8.244 | 9.244 |
4 | 32 | 20 | 11 | 8.548 | 9.548 |
4 | 32 | 20 | 12 | 8.616 | 9.616 |
4 | 32 | 20 | 13 | 7.586 | 8.586 |
4 | 32 | 20 | 14 | 8.921 | 9.921 |
4 | 32 | 20 | 15 | 9.199 | 10.199 |
4 | 32 | 20 | 16 | 8.711 | 9.711 |
4 | 32 | 20 | 17 | 11.026 | 12.026 |
4 | 32 | 20 | 18 | 10.804 | 11.804 |
4 | 32 | 20 | 19 | 11.591 | 12.591 |
4 | 32 | 20 | 20 | 10.519 | 11.519 |
4 | 32 | 20 | 21 | 9.027 | 10.027 |
4 | 32 | 20 | 22 | 7.848 | 8.848 |
4 | 32 | 20 | 23 | 12.319 | 13.319 |
4 | 32 | 20 | 24 | 10.068 | 11.068 |
4 | 32 | 20 | 25 | 12.198 | 13.198 |
4 | 32 | 20 | 26 | 7.872 | 8.872 |
4 | 32 | 20 | 27 | 8.831 | 9.831 |
4 | 32 | 20 | 28 | 10.432 | 11.432 |
4 | 32 | 20 | 29 | 8.886 | 9.886 |
4 | 32 | 20 | 30 | 8.553 | 9.553 |
4 | 32 | 20 | 31 | 11.836 | 12.836 |
4 | 32 | 20 | 32 | 7.608 | 8.608 |
4 | 32 | 20 | 33 | 11.136 | 12.136 |
4 | 32 | 20 | 34 | 13.533 | 14.533 |
4 | 32 | 20 | 35 | 14.891 | 15.891 |
4 | 32 | 20 | 36 | 19.392 | 20.392 |
4 | 32 | 20 | 37 | 22.947 | 23.947 |
4 | 32 | 20 | 38 | 23.988 | 24.988 |
4 | 32 | 20 | 39 | 20.032 | 21.032 |
4 | 32 | 20 | 40 | 27.083 | 28.083 |
4 | 32 | 20 | 41 | 28.207 | 29.207 |
4 | 32 | 20 | 42 | 27.317 | 28.317 |
4 | 32 | 20 | 43 | 34.869 | 35.869 |
4 | 32 | 20 | 44 | 33.646 | 34.646 |
4 | 32 | 20 | 45 | 36.784 | 37.784 |
4 | 32 | 20 | 46 | 37.477 | 38.477 |
4 | 32 | 20 | 47 | 40.527 | 41.527 |
4 | 32 | 20 | 48 | 41.814 | 42.814 |
4 | 32 | 20 | 49 | 40.749 | 41.749 |
4 | 32 | 20 | 50 | 45.507 | 46.507 |
4 | 32 | 20 | 51 | 45.754 | 46.754 |
4 | 32 | 20 | 52 | 47.572 | 48.572 |
4 | 32 | 20 | 53 | 56.028 | 57.028 |
4 | 32 | 20 | 54 | 51.273 | 52.273 |
4 | 32 | 20 | 55 | 51.980 | 52.980 |
4 | 32 | 20 | 56 | 47.747 | 48.747 |
4 | 32 | 20 | 57 | 48.654 | 49.654 |
4 | 32 | 20 | 58 | 50.635 | 51.635 |
4 | 32 | 20 | 59 | 48.446 | 49.446 |
4 | 32 | 20 | 60 | 50.343 | 51.343 |
5 | 19 | 20 | 1 | 10.667 | 11.667 |
5 | 19 | 20 | 2 | 6.804 | 7.804 |
5 | 19 | 20 | 3 | 8.303 | 9.303 |
5 | 19 | 20 | 4 | 14.498 | 15.498 |
5 | 19 | 20 | 5 | 6.868 | 7.868 |
5 | 19 | 20 | 6 | 12.367 | 13.367 |
5 | 19 | 20 | 7 | 9.414 | 10.414 |
5 | 19 | 20 | 8 | 9.444 | 10.444 |
5 | 19 | 20 | 9 | 8.745 | 9.745 |
5 | 19 | 20 | 10 | 14.305 | 15.305 |
5 | 19 | 20 | 11 | 10.961 | 11.961 |
5 | 19 | 20 | 12 | 10.451 | 11.451 |
5 | 19 | 20 | 13 | 14.828 | 15.828 |
5 | 19 | 20 | 14 | 6.272 | 7.272 |
5 | 19 | 20 | 15 | 10.096 | 11.096 |
5 | 19 | 20 | 16 | 12.403 | 13.403 |
5 | 19 | 20 | 17 | 8.464 | 9.464 |
5 | 19 | 20 | 18 | 8.629 | 9.629 |
5 | 19 | 20 | 19 | 9.839 | 10.839 |
5 | 19 | 20 | 20 | 14.449 | 15.449 |
5 | 19 | 20 | 21 | 13.049 | 14.049 |
5 | 19 | 20 | 22 | 16.131 | 17.131 |
5 | 19 | 20 | 23 | 18.193 | 19.193 |
5 | 19 | 20 | 24 | 17.921 | 18.921 |
5 | 19 | 20 | 25 | 23.902 | 24.902 |
5 | 19 | 20 | 26 | 22.576 | 23.576 |
5 | 19 | 20 | 27 | 23.059 | 24.059 |
5 | 19 | 20 | 28 | 25.573 | 26.573 |
5 | 19 | 20 | 29 | 29.038 | 30.038 |
5 | 19 | 20 | 30 | 31.427 | 32.427 |
5 | 19 | 20 | 31 | 33.964 | 34.964 |
5 | 19 | 20 | 32 | 36.342 | 37.342 |
5 | 19 | 20 | 33 | 38.469 | 39.469 |
5 | 19 | 20 | 34 | 41.438 | 42.438 |
5 | 19 | 20 | 35 | 40.760 | 41.760 |
5 | 19 | 20 | 36 | 44.753 | 45.753 |
5 | 19 | 20 | 37 | 47.462 | 48.462 |
5 | 19 | 20 | 38 | 48.816 | 49.816 |
5 | 19 | 20 | 39 | 52.240 | 53.240 |
5 | 19 | 20 | 40 | 50.288 | 51.288 |
5 | 19 | 20 | 41 | 51.077 | 52.077 |
5 | 19 | 20 | 42 | 48.519 | 49.519 |
5 | 19 | 20 | 43 | 51.011 | 52.011 |
5 | 19 | 20 | 44 | 49.589 | 50.589 |
5 | 19 | 20 | 45 | 50.637 | 51.637 |
5 | 19 | 20 | 46 | 47.937 | 48.937 |
5 | 19 | 20 | 47 | 45.461 | 46.461 |
5 | 19 | 20 | 48 | 52.178 | 53.178 |
5 | 19 | 20 | 49 | 48.010 | 49.010 |
5 | 19 | 20 | 50 | 47.008 | 48.008 |
5 | 19 | 20 | 51 | 50.800 | 51.800 |
5 | 19 | 20 | 52 | 47.707 | 48.707 |
5 | 19 | 20 | 53 | 54.898 | 55.898 |
5 | 19 | 20 | 54 | 49.207 | 50.207 |
5 | 19 | 20 | 55 | 52.968 | 53.968 |
5 | 19 | 20 | 56 | 51.581 | 52.581 |
5 | 19 | 20 | 57 | 47.745 | 48.745 |
5 | 19 | 20 | 58 | 53.559 | 54.559 |
5 | 19 | 20 | 59 | 48.210 | 49.210 |
5 | 19 | 20 | 60 | 50.766 | 51.766 |
6 | 24 | 20 | 1 | 13.027 | 14.027 |
6 | 24 | 20 | 2 | 7.471 | 8.471 |
6 | 24 | 20 | 3 | 13.680 | 14.680 |
6 | 24 | 20 | 4 | 5.769 | 6.769 |
6 | 24 | 20 | 5 | 10.789 | 11.789 |
6 | 24 | 20 | 6 | 8.699 | 9.699 |
6 | 24 | 20 | 7 | 9.323 | 10.323 |
6 | 24 | 20 | 8 | 8.312 | 9.312 |
6 | 24 | 20 | 9 | 12.865 | 13.865 |
6 | 24 | 20 | 10 | 9.967 | 10.967 |
6 | 24 | 20 | 11 | 6.926 | 7.926 |
6 | 24 | 20 | 12 | 7.546 | 8.546 |
6 | 24 | 20 | 13 | 10.175 | 11.175 |
6 | 24 | 20 | 14 | 12.912 | 13.912 |
6 | 24 | 20 | 15 | 5.829 | 6.829 |
6 | 24 | 20 | 16 | 8.554 | 9.554 |
6 | 24 | 20 | 17 | 10.514 | 11.514 |
6 | 24 | 20 | 18 | 12.225 | 13.225 |
6 | 24 | 20 | 19 | 9.299 | 10.299 |
6 | 24 | 20 | 20 | 9.090 | 10.090 |
6 | 24 | 20 | 21 | 9.931 | 10.931 |
6 | 24 | 20 | 22 | 10.490 | 11.490 |
6 | 24 | 20 | 23 | 12.348 | 13.348 |
6 | 24 | 20 | 24 | 11.752 | 12.752 |
6 | 24 | 20 | 25 | 10.447 | 11.447 |
6 | 24 | 20 | 26 | 13.391 | 14.391 |
6 | 24 | 20 | 27 | 16.231 | 17.231 |
6 | 24 | 20 | 28 | 16.951 | 17.951 |
6 | 24 | 20 | 29 | 21.799 | 22.799 |
6 | 24 | 20 | 30 | 21.528 | 22.528 |
6 | 24 | 20 | 31 | 21.879 | 22.879 |
6 | 24 | 20 | 32 | 25.989 | 26.989 |
6 | 24 | 20 | 33 | 26.665 | 27.665 |
6 | 24 | 20 | 34 | 32.069 | 33.069 |
6 | 24 | 20 | 35 | 32.795 | 33.795 |
6 | 24 | 20 | 36 | 35.019 | 36.019 |
6 | 24 | 20 | 37 | 37.480 | 38.480 |
6 | 24 | 20 | 38 | 32.867 | 33.867 |
6 | 24 | 20 | 39 | 35.365 | 36.365 |
6 | 24 | 20 | 40 | 41.401 | 42.401 |
6 | 24 | 20 | 41 | 46.800 | 47.800 |
6 | 24 | 20 | 42 | 49.059 | 50.059 |
6 | 24 | 20 | 43 | 46.944 | 47.944 |
6 | 24 | 20 | 44 | 50.266 | 51.266 |
6 | 24 | 20 | 45 | 54.224 | 55.224 |
6 | 24 | 20 | 46 | 50.032 | 51.032 |
6 | 24 | 20 | 47 | 51.803 | 52.803 |
6 | 24 | 20 | 48 | 49.742 | 50.742 |
6 | 24 | 20 | 49 | 48.780 | 49.780 |
6 | 24 | 20 | 50 | 48.083 | 49.083 |
6 | 24 | 20 | 51 | 48.620 | 49.620 |
6 | 24 | 20 | 52 | 48.069 | 49.069 |
6 | 24 | 20 | 53 | 48.062 | 49.062 |
6 | 24 | 20 | 54 | 46.871 | 47.871 |
6 | 24 | 20 | 55 | 50.262 | 51.262 |
6 | 24 | 20 | 56 | 44.337 | 45.337 |
6 | 24 | 20 | 57 | 51.324 | 52.324 |
6 | 24 | 20 | 58 | 48.036 | 49.036 |
6 | 24 | 20 | 59 | 54.790 | 55.790 |
6 | 24 | 20 | 60 | 48.737 | 49.737 |
7 | 10 | 19 | 1 | 9.695 | 10.695 |
7 | 10 | 19 | 2 | 9.174 | 10.174 |
7 | 10 | 19 | 3 | 10.637 | 11.637 |
7 | 10 | 19 | 4 | 9.136 | 10.136 |
7 | 10 | 19 | 5 | 7.362 | 8.362 |
7 | 10 | 19 | 6 | 14.267 | 15.267 |
7 | 10 | 19 | 7 | 9.448 | 10.448 |
7 | 10 | 19 | 8 | 12.378 | 13.378 |
7 | 10 | 19 | 9 | 6.093 | 7.093 |
7 | 10 | 19 | 10 | 5.854 | 6.854 |
7 | 10 | 19 | 11 | 9.539 | 10.539 |
7 | 10 | 19 | 12 | 14.262 | 15.262 |
7 | 10 | 19 | 13 | 13.727 | 14.727 |
7 | 10 | 19 | 14 | 19.425 | 20.425 |
7 | 10 | 19 | 15 | 20.669 | 21.669 |
7 | 10 | 19 | 16 | 22.576 | 23.576 |
7 | 10 | 19 | 17 | 26.741 | 27.741 |
7 | 10 | 19 | 18 | 24.729 | 25.729 |
7 | 10 | 19 | 19 | 28.852 | 29.852 |
7 | 10 | 19 | 20 | 30.760 | 31.760 |
7 | 10 | 19 | 21 | 31.628 | 32.628 |
7 | 10 | 19 | 22 | 34.361 | 35.361 |
7 | 10 | 19 | 23 | 36.095 | 37.095 |
7 | 10 | 19 | 24 | 40.918 | 41.918 |
7 | 10 | 19 | 25 | 39.432 | 40.432 |
7 | 10 | 19 | 26 | 41.137 | 42.137 |
7 | 10 | 19 | 27 | 43.049 | 44.049 |
7 | 10 | 19 | 28 | 46.761 | 47.761 |
7 | 10 | 19 | 29 | 46.199 | 47.199 |
7 | 10 | 19 | 30 | 48.769 | 49.769 |
7 | 10 | 19 | 31 | 47.367 | 48.367 |
7 | 10 | 19 | 32 | 49.477 | 50.477 |
7 | 10 | 19 | 33 | 52.471 | 53.471 |
7 | 10 | 19 | 34 | 49.366 | 50.366 |
7 | 10 | 19 | 35 | 44.544 | 45.544 |
7 | 10 | 19 | 36 | 48.075 | 49.075 |
7 | 10 | 19 | 37 | 46.384 | 47.384 |
7 | 10 | 19 | 38 | 47.661 | 48.661 |
7 | 10 | 19 | 39 | 45.355 | 46.355 |
7 | 10 | 19 | 40 | 49.098 | 50.098 |
7 | 10 | 19 | 41 | 48.016 | 49.016 |
7 | 10 | 19 | 42 | 47.499 | 48.499 |
7 | 10 | 19 | 43 | 49.154 | 50.154 |
7 | 10 | 19 | 44 | 48.998 | 49.998 |
7 | 10 | 19 | 45 | 47.308 | 48.308 |
7 | 10 | 19 | 46 | 46.442 | 47.442 |
7 | 10 | 19 | 47 | 49.660 | 50.660 |
7 | 10 | 19 | 48 | 48.067 | 49.067 |
7 | 10 | 19 | 49 | 46.288 | 47.288 |
7 | 10 | 19 | 50 | 45.444 | 46.444 |
7 | 10 | 19 | 51 | 48.753 | 49.753 |
7 | 10 | 19 | 52 | 49.891 | 50.891 |
7 | 10 | 19 | 53 | 49.418 | 50.418 |
7 | 10 | 19 | 54 | 47.998 | 48.998 |
7 | 10 | 19 | 55 | 50.407 | 51.407 |
7 | 10 | 19 | 56 | 46.834 | 47.834 |
7 | 10 | 19 | 57 | 46.451 | 47.451 |
7 | 10 | 19 | 58 | 48.048 | 49.048 |
7 | 10 | 19 | 59 | 48.951 | 49.951 |
7 | 10 | 19 | 60 | 52.757 | 53.757 |
8 | 13 | 20 | 1 | 10.596 | 11.596 |
8 | 13 | 20 | 2 | 11.746 | 12.746 |
8 | 13 | 20 | 3 | 10.903 | 11.903 |
8 | 13 | 20 | 4 | 11.403 | 12.403 |
8 | 13 | 20 | 5 | 8.263 | 9.263 |
8 | 13 | 20 | 6 | 7.589 | 8.589 |
8 | 13 | 20 | 7 | 8.232 | 9.232 |
8 | 13 | 20 | 8 | 7.295 | 8.295 |
8 | 13 | 20 | 9 | 10.028 | 11.028 |
8 | 13 | 20 | 10 | 10.105 | 11.105 |
8 | 13 | 20 | 11 | 9.797 | 10.797 |
8 | 13 | 20 | 12 | 11.889 | 12.889 |
8 | 13 | 20 | 13 | 7.041 | 8.041 |
8 | 13 | 20 | 14 | 12.705 | 13.705 |
8 | 13 | 20 | 15 | 13.626 | 14.626 |
8 | 13 | 20 | 16 | 14.990 | 15.990 |
8 | 13 | 20 | 17 | 19.614 | 20.614 |
8 | 13 | 20 | 18 | 23.575 | 24.575 |
8 | 13 | 20 | 19 | 22.594 | 23.594 |
8 | 13 | 20 | 20 | 25.971 | 26.971 |
8 | 13 | 20 | 21 | 26.860 | 27.860 |
8 | 13 | 20 | 22 | 30.064 | 31.064 |
8 | 13 | 20 | 23 | 29.586 | 30.586 |
8 | 13 | 20 | 24 | 31.227 | 32.227 |
8 | 13 | 20 | 25 | 34.261 | 35.261 |
8 | 13 | 20 | 26 | 36.188 | 37.188 |
8 | 13 | 20 | 27 | 38.330 | 39.330 |
8 | 13 | 20 | 28 | 42.613 | 43.613 |
8 | 13 | 20 | 29 | 43.275 | 44.275 |
8 | 13 | 20 | 30 | 42.504 | 43.504 |
8 | 13 | 20 | 31 | 42.509 | 43.509 |
8 | 13 | 20 | 32 | 51.437 | 52.437 |
8 | 13 | 20 | 33 | 53.725 | 54.725 |
8 | 13 | 20 | 34 | 50.306 | 51.306 |
8 | 13 | 20 | 35 | 48.788 | 49.788 |
8 | 13 | 20 | 36 | 51.408 | 52.408 |
8 | 13 | 20 | 37 | 53.231 | 54.231 |
8 | 13 | 20 | 38 | 50.961 | 51.961 |
8 | 13 | 20 | 39 | 53.231 | 54.231 |
8 | 13 | 20 | 40 | 48.398 | 49.398 |
8 | 13 | 20 | 41 | 48.722 | 49.722 |
8 | 13 | 20 | 42 | 50.481 | 51.481 |
8 | 13 | 20 | 43 | 51.476 | 52.476 |
8 | 13 | 20 | 44 | 50.614 | 51.614 |
8 | 13 | 20 | 45 | 48.026 | 49.026 |
8 | 13 | 20 | 46 | 50.541 | 51.541 |
8 | 13 | 20 | 47 | 50.111 | 51.111 |
8 | 13 | 20 | 48 | 49.685 | 50.685 |
8 | 13 | 20 | 49 | 50.818 | 51.818 |
8 | 13 | 20 | 50 | 45.583 | 46.583 |
8 | 13 | 20 | 51 | 50.140 | 51.140 |
8 | 13 | 20 | 52 | 49.661 | 50.661 |
8 | 13 | 20 | 53 | 47.786 | 48.786 |
8 | 13 | 20 | 54 | 49.989 | 50.989 |
8 | 13 | 20 | 55 | 52.467 | 53.467 |
8 | 13 | 20 | 56 | 50.677 | 51.677 |
8 | 13 | 20 | 57 | 49.147 | 50.147 |
8 | 13 | 20 | 58 | 51.386 | 52.386 |
8 | 13 | 20 | 59 | 47.671 | 48.671 |
8 | 13 | 20 | 60 | 50.322 | 51.322 |
Notice that the variable is not saved anywhere because we did not assign the output to a variable:
d_longer
id | baseline_sessions_n | intervention_sessions_n | time | on_task |
---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 |
1 | 22 | 20 | 2 | 14.402 |
1 | 22 | 20 | 3 | 6.151 |
1 | 22 | 20 | 4 | 9.254 |
1 | 22 | 20 | 5 | 9.580 |
1 | 22 | 20 | 6 | 8.160 |
1 | 22 | 20 | 7 | 10.125 |
1 | 22 | 20 | 8 | 11.120 |
1 | 22 | 20 | 9 | 9.203 |
1 | 22 | 20 | 10 | 10.838 |
1 | 22 | 20 | 11 | 9.181 |
1 | 22 | 20 | 12 | 8.436 |
1 | 22 | 20 | 13 | 9.977 |
1 | 22 | 20 | 14 | 13.242 |
1 | 22 | 20 | 15 | 9.317 |
1 | 22 | 20 | 16 | 8.276 |
1 | 22 | 20 | 17 | 9.208 |
1 | 22 | 20 | 18 | 10.888 |
1 | 22 | 20 | 19 | 7.225 |
1 | 22 | 20 | 20 | 11.472 |
1 | 22 | 20 | 21 | 8.570 |
1 | 22 | 20 | 22 | 10.583 |
1 | 22 | 20 | 23 | 11.038 |
1 | 22 | 20 | 24 | 13.126 |
1 | 22 | 20 | 25 | 17.995 |
1 | 22 | 20 | 26 | 12.965 |
1 | 22 | 20 | 27 | 23.840 |
1 | 22 | 20 | 28 | 21.396 |
1 | 22 | 20 | 29 | 22.653 |
1 | 22 | 20 | 30 | 30.187 |
1 | 22 | 20 | 31 | 29.494 |
1 | 22 | 20 | 32 | 31.359 |
1 | 22 | 20 | 33 | 29.316 |
1 | 22 | 20 | 34 | 33.783 |
1 | 22 | 20 | 35 | 38.945 |
1 | 22 | 20 | 36 | 37.283 |
1 | 22 | 20 | 37 | 42.568 |
1 | 22 | 20 | 38 | 37.734 |
1 | 22 | 20 | 39 | 44.345 |
1 | 22 | 20 | 40 | 44.606 |
1 | 22 | 20 | 41 | 49.511 |
1 | 22 | 20 | 42 | 49.604 |
1 | 22 | 20 | 43 | 48.723 |
1 | 22 | 20 | 44 | 50.882 |
1 | 22 | 20 | 45 | 51.230 |
1 | 22 | 20 | 46 | 49.038 |
1 | 22 | 20 | 47 | 51.275 |
1 | 22 | 20 | 48 | 49.000 |
1 | 22 | 20 | 49 | 51.135 |
1 | 22 | 20 | 50 | 48.722 |
1 | 22 | 20 | 51 | 50.638 |
1 | 22 | 20 | 52 | 51.235 |
1 | 22 | 20 | 53 | 54.457 |
1 | 22 | 20 | 54 | 48.840 |
1 | 22 | 20 | 55 | 50.354 |
1 | 22 | 20 | 56 | 54.538 |
1 | 22 | 20 | 57 | 52.765 |
1 | 22 | 20 | 58 | 50.677 |
1 | 22 | 20 | 59 | 50.179 |
1 | 22 | 20 | 60 | 50.030 |
2 | 18 | 19 | 1 | 9.114 |
2 | 18 | 19 | 2 | 8.586 |
2 | 18 | 19 | 3 | 11.010 |
2 | 18 | 19 | 4 | 9.356 |
2 | 18 | 19 | 5 | 8.095 |
2 | 18 | 19 | 6 | 8.772 |
2 | 18 | 19 | 7 | 8.953 |
2 | 18 | 19 | 8 | 7.443 |
2 | 18 | 19 | 9 | 11.057 |
2 | 18 | 19 | 10 | 7.590 |
2 | 18 | 19 | 11 | 11.087 |
2 | 18 | 19 | 12 | 10.670 |
2 | 18 | 19 | 13 | 7.843 |
2 | 18 | 19 | 14 | 9.018 |
2 | 18 | 19 | 15 | 11.266 |
2 | 18 | 19 | 16 | 5.886 |
2 | 18 | 19 | 17 | 7.388 |
2 | 18 | 19 | 18 | 8.107 |
2 | 18 | 19 | 19 | 12.111 |
2 | 18 | 19 | 20 | 14.825 |
2 | 18 | 19 | 21 | 13.107 |
2 | 18 | 19 | 22 | 18.156 |
2 | 18 | 19 | 23 | 21.652 |
2 | 18 | 19 | 24 | 22.819 |
2 | 18 | 19 | 25 | 24.846 |
2 | 18 | 19 | 26 | 25.152 |
2 | 18 | 19 | 27 | 29.230 |
2 | 18 | 19 | 28 | 31.499 |
2 | 18 | 19 | 29 | 30.092 |
2 | 18 | 19 | 30 | 34.848 |
2 | 18 | 19 | 31 | 29.831 |
2 | 18 | 19 | 32 | 42.884 |
2 | 18 | 19 | 33 | 40.936 |
2 | 18 | 19 | 34 | 45.121 |
2 | 18 | 19 | 35 | 48.622 |
2 | 18 | 19 | 36 | 48.627 |
2 | 18 | 19 | 37 | 47.455 |
2 | 18 | 19 | 38 | 47.031 |
2 | 18 | 19 | 39 | 48.660 |
2 | 18 | 19 | 40 | 47.544 |
2 | 18 | 19 | 41 | 50.799 |
2 | 18 | 19 | 42 | 50.576 |
2 | 18 | 19 | 43 | 49.929 |
2 | 18 | 19 | 44 | 48.240 |
2 | 18 | 19 | 45 | 49.406 |
2 | 18 | 19 | 46 | 48.225 |
2 | 18 | 19 | 47 | 47.975 |
2 | 18 | 19 | 48 | 47.588 |
2 | 18 | 19 | 49 | 44.746 |
2 | 18 | 19 | 50 | 43.743 |
2 | 18 | 19 | 51 | 49.148 |
2 | 18 | 19 | 52 | 48.024 |
2 | 18 | 19 | 53 | 44.893 |
2 | 18 | 19 | 54 | 48.279 |
2 | 18 | 19 | 55 | 47.229 |
2 | 18 | 19 | 56 | 48.910 |
2 | 18 | 19 | 57 | 44.843 |
2 | 18 | 19 | 58 | 45.472 |
2 | 18 | 19 | 59 | 49.480 |
2 | 18 | 19 | 60 | 50.346 |
3 | 5 | 18 | 1 | 7.244 |
3 | 5 | 18 | 2 | 14.309 |
3 | 5 | 18 | 3 | 7.979 |
3 | 5 | 18 | 4 | 11.175 |
3 | 5 | 18 | 5 | 12.287 |
3 | 5 | 18 | 6 | 13.146 |
3 | 5 | 18 | 7 | 11.694 |
3 | 5 | 18 | 8 | 18.998 |
3 | 5 | 18 | 9 | 16.125 |
3 | 5 | 18 | 10 | 20.296 |
3 | 5 | 18 | 11 | 21.905 |
3 | 5 | 18 | 12 | 21.952 |
3 | 5 | 18 | 13 | 27.114 |
3 | 5 | 18 | 14 | 27.933 |
3 | 5 | 18 | 15 | 27.448 |
3 | 5 | 18 | 16 | 30.747 |
3 | 5 | 18 | 17 | 36.685 |
3 | 5 | 18 | 18 | 37.337 |
3 | 5 | 18 | 19 | 39.197 |
3 | 5 | 18 | 20 | 43.845 |
3 | 5 | 18 | 21 | 44.752 |
3 | 5 | 18 | 22 | 43.358 |
3 | 5 | 18 | 23 | 46.341 |
3 | 5 | 18 | 24 | 47.006 |
3 | 5 | 18 | 25 | 44.497 |
3 | 5 | 18 | 26 | 46.507 |
3 | 5 | 18 | 27 | 44.034 |
3 | 5 | 18 | 28 | 47.017 |
3 | 5 | 18 | 29 | 48.691 |
3 | 5 | 18 | 30 | 43.648 |
3 | 5 | 18 | 31 | 47.700 |
3 | 5 | 18 | 32 | 49.477 |
3 | 5 | 18 | 33 | 48.000 |
3 | 5 | 18 | 34 | 46.173 |
3 | 5 | 18 | 35 | 48.513 |
3 | 5 | 18 | 36 | 43.801 |
3 | 5 | 18 | 37 | 48.552 |
3 | 5 | 18 | 38 | 48.298 |
3 | 5 | 18 | 39 | 43.902 |
3 | 5 | 18 | 40 | 47.103 |
3 | 5 | 18 | 41 | 51.735 |
3 | 5 | 18 | 42 | 40.911 |
3 | 5 | 18 | 43 | 45.881 |
3 | 5 | 18 | 44 | 49.407 |
3 | 5 | 18 | 45 | 45.653 |
3 | 5 | 18 | 46 | 43.964 |
3 | 5 | 18 | 47 | 46.602 |
3 | 5 | 18 | 48 | 44.568 |
3 | 5 | 18 | 49 | 42.596 |
3 | 5 | 18 | 50 | 47.055 |
3 | 5 | 18 | 51 | 46.582 |
3 | 5 | 18 | 52 | 43.501 |
3 | 5 | 18 | 53 | 42.446 |
3 | 5 | 18 | 54 | 47.222 |
3 | 5 | 18 | 55 | 44.163 |
3 | 5 | 18 | 56 | 49.381 |
3 | 5 | 18 | 57 | 44.999 |
3 | 5 | 18 | 58 | 46.108 |
3 | 5 | 18 | 59 | 47.088 |
3 | 5 | 18 | 60 | 44.919 |
4 | 32 | 20 | 1 | 11.297 |
4 | 32 | 20 | 2 | 14.307 |
4 | 32 | 20 | 3 | 14.811 |
4 | 32 | 20 | 4 | 8.678 |
4 | 32 | 20 | 5 | 9.533 |
4 | 32 | 20 | 6 | 7.823 |
4 | 32 | 20 | 7 | 9.561 |
4 | 32 | 20 | 8 | 8.209 |
4 | 32 | 20 | 9 | 12.898 |
4 | 32 | 20 | 10 | 8.244 |
4 | 32 | 20 | 11 | 8.548 |
4 | 32 | 20 | 12 | 8.616 |
4 | 32 | 20 | 13 | 7.586 |
4 | 32 | 20 | 14 | 8.921 |
4 | 32 | 20 | 15 | 9.199 |
4 | 32 | 20 | 16 | 8.711 |
4 | 32 | 20 | 17 | 11.026 |
4 | 32 | 20 | 18 | 10.804 |
4 | 32 | 20 | 19 | 11.591 |
4 | 32 | 20 | 20 | 10.519 |
4 | 32 | 20 | 21 | 9.027 |
4 | 32 | 20 | 22 | 7.848 |
4 | 32 | 20 | 23 | 12.319 |
4 | 32 | 20 | 24 | 10.068 |
4 | 32 | 20 | 25 | 12.198 |
4 | 32 | 20 | 26 | 7.872 |
4 | 32 | 20 | 27 | 8.831 |
4 | 32 | 20 | 28 | 10.432 |
4 | 32 | 20 | 29 | 8.886 |
4 | 32 | 20 | 30 | 8.553 |
4 | 32 | 20 | 31 | 11.836 |
4 | 32 | 20 | 32 | 7.608 |
4 | 32 | 20 | 33 | 11.136 |
4 | 32 | 20 | 34 | 13.533 |
4 | 32 | 20 | 35 | 14.891 |
4 | 32 | 20 | 36 | 19.392 |
4 | 32 | 20 | 37 | 22.947 |
4 | 32 | 20 | 38 | 23.988 |
4 | 32 | 20 | 39 | 20.032 |
4 | 32 | 20 | 40 | 27.083 |
4 | 32 | 20 | 41 | 28.207 |
4 | 32 | 20 | 42 | 27.317 |
4 | 32 | 20 | 43 | 34.869 |
4 | 32 | 20 | 44 | 33.646 |
4 | 32 | 20 | 45 | 36.784 |
4 | 32 | 20 | 46 | 37.477 |
4 | 32 | 20 | 47 | 40.527 |
4 | 32 | 20 | 48 | 41.814 |
4 | 32 | 20 | 49 | 40.749 |
4 | 32 | 20 | 50 | 45.507 |
4 | 32 | 20 | 51 | 45.754 |
4 | 32 | 20 | 52 | 47.572 |
4 | 32 | 20 | 53 | 56.028 |
4 | 32 | 20 | 54 | 51.273 |
4 | 32 | 20 | 55 | 51.980 |
4 | 32 | 20 | 56 | 47.747 |
4 | 32 | 20 | 57 | 48.654 |
4 | 32 | 20 | 58 | 50.635 |
4 | 32 | 20 | 59 | 48.446 |
4 | 32 | 20 | 60 | 50.343 |
5 | 19 | 20 | 1 | 10.667 |
5 | 19 | 20 | 2 | 6.804 |
5 | 19 | 20 | 3 | 8.303 |
5 | 19 | 20 | 4 | 14.498 |
5 | 19 | 20 | 5 | 6.868 |
5 | 19 | 20 | 6 | 12.367 |
5 | 19 | 20 | 7 | 9.414 |
5 | 19 | 20 | 8 | 9.444 |
5 | 19 | 20 | 9 | 8.745 |
5 | 19 | 20 | 10 | 14.305 |
5 | 19 | 20 | 11 | 10.961 |
5 | 19 | 20 | 12 | 10.451 |
5 | 19 | 20 | 13 | 14.828 |
5 | 19 | 20 | 14 | 6.272 |
5 | 19 | 20 | 15 | 10.096 |
5 | 19 | 20 | 16 | 12.403 |
5 | 19 | 20 | 17 | 8.464 |
5 | 19 | 20 | 18 | 8.629 |
5 | 19 | 20 | 19 | 9.839 |
5 | 19 | 20 | 20 | 14.449 |
5 | 19 | 20 | 21 | 13.049 |
5 | 19 | 20 | 22 | 16.131 |
5 | 19 | 20 | 23 | 18.193 |
5 | 19 | 20 | 24 | 17.921 |
5 | 19 | 20 | 25 | 23.902 |
5 | 19 | 20 | 26 | 22.576 |
5 | 19 | 20 | 27 | 23.059 |
5 | 19 | 20 | 28 | 25.573 |
5 | 19 | 20 | 29 | 29.038 |
5 | 19 | 20 | 30 | 31.427 |
5 | 19 | 20 | 31 | 33.964 |
5 | 19 | 20 | 32 | 36.342 |
5 | 19 | 20 | 33 | 38.469 |
5 | 19 | 20 | 34 | 41.438 |
5 | 19 | 20 | 35 | 40.760 |
5 | 19 | 20 | 36 | 44.753 |
5 | 19 | 20 | 37 | 47.462 |
5 | 19 | 20 | 38 | 48.816 |
5 | 19 | 20 | 39 | 52.240 |
5 | 19 | 20 | 40 | 50.288 |
5 | 19 | 20 | 41 | 51.077 |
5 | 19 | 20 | 42 | 48.519 |
5 | 19 | 20 | 43 | 51.011 |
5 | 19 | 20 | 44 | 49.589 |
5 | 19 | 20 | 45 | 50.637 |
5 | 19 | 20 | 46 | 47.937 |
5 | 19 | 20 | 47 | 45.461 |
5 | 19 | 20 | 48 | 52.178 |
5 | 19 | 20 | 49 | 48.010 |
5 | 19 | 20 | 50 | 47.008 |
5 | 19 | 20 | 51 | 50.800 |
5 | 19 | 20 | 52 | 47.707 |
5 | 19 | 20 | 53 | 54.898 |
5 | 19 | 20 | 54 | 49.207 |
5 | 19 | 20 | 55 | 52.968 |
5 | 19 | 20 | 56 | 51.581 |
5 | 19 | 20 | 57 | 47.745 |
5 | 19 | 20 | 58 | 53.559 |
5 | 19 | 20 | 59 | 48.210 |
5 | 19 | 20 | 60 | 50.766 |
6 | 24 | 20 | 1 | 13.027 |
6 | 24 | 20 | 2 | 7.471 |
6 | 24 | 20 | 3 | 13.680 |
6 | 24 | 20 | 4 | 5.769 |
6 | 24 | 20 | 5 | 10.789 |
6 | 24 | 20 | 6 | 8.699 |
6 | 24 | 20 | 7 | 9.323 |
6 | 24 | 20 | 8 | 8.312 |
6 | 24 | 20 | 9 | 12.865 |
6 | 24 | 20 | 10 | 9.967 |
6 | 24 | 20 | 11 | 6.926 |
6 | 24 | 20 | 12 | 7.546 |
6 | 24 | 20 | 13 | 10.175 |
6 | 24 | 20 | 14 | 12.912 |
6 | 24 | 20 | 15 | 5.829 |
6 | 24 | 20 | 16 | 8.554 |
6 | 24 | 20 | 17 | 10.514 |
6 | 24 | 20 | 18 | 12.225 |
6 | 24 | 20 | 19 | 9.299 |
6 | 24 | 20 | 20 | 9.090 |
6 | 24 | 20 | 21 | 9.931 |
6 | 24 | 20 | 22 | 10.490 |
6 | 24 | 20 | 23 | 12.348 |
6 | 24 | 20 | 24 | 11.752 |
6 | 24 | 20 | 25 | 10.447 |
6 | 24 | 20 | 26 | 13.391 |
6 | 24 | 20 | 27 | 16.231 |
6 | 24 | 20 | 28 | 16.951 |
6 | 24 | 20 | 29 | 21.799 |
6 | 24 | 20 | 30 | 21.528 |
6 | 24 | 20 | 31 | 21.879 |
6 | 24 | 20 | 32 | 25.989 |
6 | 24 | 20 | 33 | 26.665 |
6 | 24 | 20 | 34 | 32.069 |
6 | 24 | 20 | 35 | 32.795 |
6 | 24 | 20 | 36 | 35.019 |
6 | 24 | 20 | 37 | 37.480 |
6 | 24 | 20 | 38 | 32.867 |
6 | 24 | 20 | 39 | 35.365 |
6 | 24 | 20 | 40 | 41.401 |
6 | 24 | 20 | 41 | 46.800 |
6 | 24 | 20 | 42 | 49.059 |
6 | 24 | 20 | 43 | 46.944 |
6 | 24 | 20 | 44 | 50.266 |
6 | 24 | 20 | 45 | 54.224 |
6 | 24 | 20 | 46 | 50.032 |
6 | 24 | 20 | 47 | 51.803 |
6 | 24 | 20 | 48 | 49.742 |
6 | 24 | 20 | 49 | 48.780 |
6 | 24 | 20 | 50 | 48.083 |
6 | 24 | 20 | 51 | 48.620 |
6 | 24 | 20 | 52 | 48.069 |
6 | 24 | 20 | 53 | 48.062 |
6 | 24 | 20 | 54 | 46.871 |
6 | 24 | 20 | 55 | 50.262 |
6 | 24 | 20 | 56 | 44.337 |
6 | 24 | 20 | 57 | 51.324 |
6 | 24 | 20 | 58 | 48.036 |
6 | 24 | 20 | 59 | 54.790 |
6 | 24 | 20 | 60 | 48.737 |
7 | 10 | 19 | 1 | 9.695 |
7 | 10 | 19 | 2 | 9.174 |
7 | 10 | 19 | 3 | 10.637 |
7 | 10 | 19 | 4 | 9.136 |
7 | 10 | 19 | 5 | 7.362 |
7 | 10 | 19 | 6 | 14.267 |
7 | 10 | 19 | 7 | 9.448 |
7 | 10 | 19 | 8 | 12.378 |
7 | 10 | 19 | 9 | 6.093 |
7 | 10 | 19 | 10 | 5.854 |
7 | 10 | 19 | 11 | 9.539 |
7 | 10 | 19 | 12 | 14.262 |
7 | 10 | 19 | 13 | 13.727 |
7 | 10 | 19 | 14 | 19.425 |
7 | 10 | 19 | 15 | 20.669 |
7 | 10 | 19 | 16 | 22.576 |
7 | 10 | 19 | 17 | 26.741 |
7 | 10 | 19 | 18 | 24.729 |
7 | 10 | 19 | 19 | 28.852 |
7 | 10 | 19 | 20 | 30.760 |
7 | 10 | 19 | 21 | 31.628 |
7 | 10 | 19 | 22 | 34.361 |
7 | 10 | 19 | 23 | 36.095 |
7 | 10 | 19 | 24 | 40.918 |
7 | 10 | 19 | 25 | 39.432 |
7 | 10 | 19 | 26 | 41.137 |
7 | 10 | 19 | 27 | 43.049 |
7 | 10 | 19 | 28 | 46.761 |
7 | 10 | 19 | 29 | 46.199 |
7 | 10 | 19 | 30 | 48.769 |
7 | 10 | 19 | 31 | 47.367 |
7 | 10 | 19 | 32 | 49.477 |
7 | 10 | 19 | 33 | 52.471 |
7 | 10 | 19 | 34 | 49.366 |
7 | 10 | 19 | 35 | 44.544 |
7 | 10 | 19 | 36 | 48.075 |
7 | 10 | 19 | 37 | 46.384 |
7 | 10 | 19 | 38 | 47.661 |
7 | 10 | 19 | 39 | 45.355 |
7 | 10 | 19 | 40 | 49.098 |
7 | 10 | 19 | 41 | 48.016 |
7 | 10 | 19 | 42 | 47.499 |
7 | 10 | 19 | 43 | 49.154 |
7 | 10 | 19 | 44 | 48.998 |
7 | 10 | 19 | 45 | 47.308 |
7 | 10 | 19 | 46 | 46.442 |
7 | 10 | 19 | 47 | 49.660 |
7 | 10 | 19 | 48 | 48.067 |
7 | 10 | 19 | 49 | 46.288 |
7 | 10 | 19 | 50 | 45.444 |
7 | 10 | 19 | 51 | 48.753 |
7 | 10 | 19 | 52 | 49.891 |
7 | 10 | 19 | 53 | 49.418 |
7 | 10 | 19 | 54 | 47.998 |
7 | 10 | 19 | 55 | 50.407 |
7 | 10 | 19 | 56 | 46.834 |
7 | 10 | 19 | 57 | 46.451 |
7 | 10 | 19 | 58 | 48.048 |
7 | 10 | 19 | 59 | 48.951 |
7 | 10 | 19 | 60 | 52.757 |
8 | 13 | 20 | 1 | 10.596 |
8 | 13 | 20 | 2 | 11.746 |
8 | 13 | 20 | 3 | 10.903 |
8 | 13 | 20 | 4 | 11.403 |
8 | 13 | 20 | 5 | 8.263 |
8 | 13 | 20 | 6 | 7.589 |
8 | 13 | 20 | 7 | 8.232 |
8 | 13 | 20 | 8 | 7.295 |
8 | 13 | 20 | 9 | 10.028 |
8 | 13 | 20 | 10 | 10.105 |
8 | 13 | 20 | 11 | 9.797 |
8 | 13 | 20 | 12 | 11.889 |
8 | 13 | 20 | 13 | 7.041 |
8 | 13 | 20 | 14 | 12.705 |
8 | 13 | 20 | 15 | 13.626 |
8 | 13 | 20 | 16 | 14.990 |
8 | 13 | 20 | 17 | 19.614 |
8 | 13 | 20 | 18 | 23.575 |
8 | 13 | 20 | 19 | 22.594 |
8 | 13 | 20 | 20 | 25.971 |
8 | 13 | 20 | 21 | 26.860 |
8 | 13 | 20 | 22 | 30.064 |
8 | 13 | 20 | 23 | 29.586 |
8 | 13 | 20 | 24 | 31.227 |
8 | 13 | 20 | 25 | 34.261 |
8 | 13 | 20 | 26 | 36.188 |
8 | 13 | 20 | 27 | 38.330 |
8 | 13 | 20 | 28 | 42.613 |
8 | 13 | 20 | 29 | 43.275 |
8 | 13 | 20 | 30 | 42.504 |
8 | 13 | 20 | 31 | 42.509 |
8 | 13 | 20 | 32 | 51.437 |
8 | 13 | 20 | 33 | 53.725 |
8 | 13 | 20 | 34 | 50.306 |
8 | 13 | 20 | 35 | 48.788 |
8 | 13 | 20 | 36 | 51.408 |
8 | 13 | 20 | 37 | 53.231 |
8 | 13 | 20 | 38 | 50.961 |
8 | 13 | 20 | 39 | 53.231 |
8 | 13 | 20 | 40 | 48.398 |
8 | 13 | 20 | 41 | 48.722 |
8 | 13 | 20 | 42 | 50.481 |
8 | 13 | 20 | 43 | 51.476 |
8 | 13 | 20 | 44 | 50.614 |
8 | 13 | 20 | 45 | 48.026 |
8 | 13 | 20 | 46 | 50.541 |
8 | 13 | 20 | 47 | 50.111 |
8 | 13 | 20 | 48 | 49.685 |
8 | 13 | 20 | 49 | 50.818 |
8 | 13 | 20 | 50 | 45.583 |
8 | 13 | 20 | 51 | 50.140 |
8 | 13 | 20 | 52 | 49.661 |
8 | 13 | 20 | 53 | 47.786 |
8 | 13 | 20 | 54 | 49.989 |
8 | 13 | 20 | 55 | 52.467 |
8 | 13 | 20 | 56 | 50.677 |
8 | 13 | 20 | 57 | 49.147 |
8 | 13 | 20 | 58 | 51.386 |
8 | 13 | 20 | 59 | 47.671 |
8 | 13 | 20 | 60 | 50.322 |
We need to identify which rows are part of the pre-intervention phase, which are in the intervention phase, and which are in the post-intervention phase. Let’s use the case_when
function, which is like a series of “if-then” statements followed by the desired result.
<- d_longer %>%
d_longer mutate(phase = case_when(
<= baseline_sessions_n ~ "Pre-Intervention",
time <= baseline_sessions_n + intervention_sessions_n ~ "Intervention",
time > baseline_sessions_n + intervention_sessions_n ~ "Post-Intervention"
time
))
d_longer
id | baseline_sessions_n | intervention_sessions_n | time | on_task | phase |
---|---|---|---|---|---|
1 | 22 | 20 | 1 | 11.481 | Pre-Intervention |
1 | 22 | 20 | 2 | 14.402 | Pre-Intervention |
1 | 22 | 20 | 3 | 6.151 | Pre-Intervention |
1 | 22 | 20 | 4 | 9.254 | Pre-Intervention |
1 | 22 | 20 | 5 | 9.580 | Pre-Intervention |
1 | 22 | 20 | 6 | 8.160 | Pre-Intervention |
1 | 22 | 20 | 7 | 10.125 | Pre-Intervention |
1 | 22 | 20 | 8 | 11.120 | Pre-Intervention |
1 | 22 | 20 | 9 | 9.203 | Pre-Intervention |
1 | 22 | 20 | 10 | 10.838 | Pre-Intervention |
1 | 22 | 20 | 11 | 9.181 | Pre-Intervention |
1 | 22 | 20 | 12 | 8.436 | Pre-Intervention |
1 | 22 | 20 | 13 | 9.977 | Pre-Intervention |
1 | 22 | 20 | 14 | 13.242 | Pre-Intervention |
1 | 22 | 20 | 15 | 9.317 | Pre-Intervention |
1 | 22 | 20 | 16 | 8.276 | Pre-Intervention |
1 | 22 | 20 | 17 | 9.208 | Pre-Intervention |
1 | 22 | 20 | 18 | 10.888 | Pre-Intervention |
1 | 22 | 20 | 19 | 7.225 | Pre-Intervention |
1 | 22 | 20 | 20 | 11.472 | Pre-Intervention |
1 | 22 | 20 | 21 | 8.570 | Pre-Intervention |
1 | 22 | 20 | 22 | 10.583 | Pre-Intervention |
1 | 22 | 20 | 23 | 11.038 | Intervention |
1 | 22 | 20 | 24 | 13.126 | Intervention |
1 | 22 | 20 | 25 | 17.995 | Intervention |
1 | 22 | 20 | 26 | 12.965 | Intervention |
1 | 22 | 20 | 27 | 23.840 | Intervention |
1 | 22 | 20 | 28 | 21.396 | Intervention |
1 | 22 | 20 | 29 | 22.653 | Intervention |
1 | 22 | 20 | 30 | 30.187 | Intervention |
1 | 22 | 20 | 31 | 29.494 | Intervention |
1 | 22 | 20 | 32 | 31.359 | Intervention |
1 | 22 | 20 | 33 | 29.316 | Intervention |
1 | 22 | 20 | 34 | 33.783 | Intervention |
1 | 22 | 20 | 35 | 38.945 | Intervention |
1 | 22 | 20 | 36 | 37.283 | Intervention |
1 | 22 | 20 | 37 | 42.568 | Intervention |
1 | 22 | 20 | 38 | 37.734 | Intervention |
1 | 22 | 20 | 39 | 44.345 | Intervention |
1 | 22 | 20 | 40 | 44.606 | Intervention |
1 | 22 | 20 | 41 | 49.511 | Intervention |
1 | 22 | 20 | 42 | 49.604 | Intervention |
1 | 22 | 20 | 43 | 48.723 | Post-Intervention |
1 | 22 | 20 | 44 | 50.882 | Post-Intervention |
1 | 22 | 20 | 45 | 51.230 | Post-Intervention |
1 | 22 | 20 | 46 | 49.038 | Post-Intervention |
1 | 22 | 20 | 47 | 51.275 | Post-Intervention |
1 | 22 | 20 | 48 | 49.000 | Post-Intervention |
1 | 22 | 20 | 49 | 51.135 | Post-Intervention |
1 | 22 | 20 | 50 | 48.722 | Post-Intervention |
1 | 22 | 20 | 51 | 50.638 | Post-Intervention |
1 | 22 | 20 | 52 | 51.235 | Post-Intervention |
1 | 22 | 20 | 53 | 54.457 | Post-Intervention |
1 | 22 | 20 | 54 | 48.840 | Post-Intervention |
1 | 22 | 20 | 55 | 50.354 | Post-Intervention |
1 | 22 | 20 | 56 | 54.538 | Post-Intervention |
1 | 22 | 20 | 57 | 52.765 | Post-Intervention |
1 | 22 | 20 | 58 | 50.677 | Post-Intervention |
1 | 22 | 20 | 59 | 50.179 | Post-Intervention |
1 | 22 | 20 | 60 | 50.030 | Post-Intervention |
2 | 18 | 19 | 1 | 9.114 | Pre-Intervention |
2 | 18 | 19 | 2 | 8.586 | Pre-Intervention |
2 | 18 | 19 | 3 | 11.010 | Pre-Intervention |
2 | 18 | 19 | 4 | 9.356 | Pre-Intervention |
2 | 18 | 19 | 5 | 8.095 | Pre-Intervention |
2 | 18 | 19 | 6 | 8.772 | Pre-Intervention |
2 | 18 | 19 | 7 | 8.953 | Pre-Intervention |
2 | 18 | 19 | 8 | 7.443 | Pre-Intervention |
2 | 18 | 19 | 9 | 11.057 | Pre-Intervention |
2 | 18 | 19 | 10 | 7.590 | Pre-Intervention |
2 | 18 | 19 | 11 | 11.087 | Pre-Intervention |
2 | 18 | 19 | 12 | 10.670 | Pre-Intervention |
2 | 18 | 19 | 13 | 7.843 | Pre-Intervention |
2 | 18 | 19 | 14 | 9.018 | Pre-Intervention |
2 | 18 | 19 | 15 | 11.266 | Pre-Intervention |
2 | 18 | 19 | 16 | 5.886 | Pre-Intervention |
2 | 18 | 19 | 17 | 7.388 | Pre-Intervention |
2 | 18 | 19 | 18 | 8.107 | Pre-Intervention |
2 | 18 | 19 | 19 | 12.111 | Intervention |
2 | 18 | 19 | 20 | 14.825 | Intervention |
2 | 18 | 19 | 21 | 13.107 | Intervention |
2 | 18 | 19 | 22 | 18.156 | Intervention |
2 | 18 | 19 | 23 | 21.652 | Intervention |
2 | 18 | 19 | 24 | 22.819 | Intervention |
2 | 18 | 19 | 25 | 24.846 | Intervention |
2 | 18 | 19 | 26 | 25.152 | Intervention |
2 | 18 | 19 | 27 | 29.230 | Intervention |
2 | 18 | 19 | 28 | 31.499 | Intervention |
2 | 18 | 19 | 29 | 30.092 | Intervention |
2 | 18 | 19 | 30 | 34.848 | Intervention |
2 | 18 | 19 | 31 | 29.831 | Intervention |
2 | 18 | 19 | 32 | 42.884 | Intervention |
2 | 18 | 19 | 33 | 40.936 | Intervention |
2 | 18 | 19 | 34 | 45.121 | Intervention |
2 | 18 | 19 | 35 | 48.622 | Intervention |
2 | 18 | 19 | 36 | 48.627 | Intervention |
2 | 18 | 19 | 37 | 47.455 | Intervention |
2 | 18 | 19 | 38 | 47.031 | Post-Intervention |
2 | 18 | 19 | 39 | 48.660 | Post-Intervention |
2 | 18 | 19 | 40 | 47.544 | Post-Intervention |
2 | 18 | 19 | 41 | 50.799 | Post-Intervention |
2 | 18 | 19 | 42 | 50.576 | Post-Intervention |
2 | 18 | 19 | 43 | 49.929 | Post-Intervention |
2 | 18 | 19 | 44 | 48.240 | Post-Intervention |
2 | 18 | 19 | 45 | 49.406 | Post-Intervention |
2 | 18 | 19 | 46 | 48.225 | Post-Intervention |
2 | 18 | 19 | 47 | 47.975 | Post-Intervention |
2 | 18 | 19 | 48 | 47.588 | Post-Intervention |
2 | 18 | 19 | 49 | 44.746 | Post-Intervention |
2 | 18 | 19 | 50 | 43.743 | Post-Intervention |
2 | 18 | 19 | 51 | 49.148 | Post-Intervention |
2 | 18 | 19 | 52 | 48.024 | Post-Intervention |
2 | 18 | 19 | 53 | 44.893 | Post-Intervention |
2 | 18 | 19 | 54 | 48.279 | Post-Intervention |
2 | 18 | 19 | 55 | 47.229 | Post-Intervention |
2 | 18 | 19 | 56 | 48.910 | Post-Intervention |
2 | 18 | 19 | 57 | 44.843 | Post-Intervention |
2 | 18 | 19 | 58 | 45.472 | Post-Intervention |
2 | 18 | 19 | 59 | 49.480 | Post-Intervention |
2 | 18 | 19 | 60 | 50.346 | Post-Intervention |
3 | 5 | 18 | 1 | 7.244 | Pre-Intervention |
3 | 5 | 18 | 2 | 14.309 | Pre-Intervention |
3 | 5 | 18 | 3 | 7.979 | Pre-Intervention |
3 | 5 | 18 | 4 | 11.175 | Pre-Intervention |
3 | 5 | 18 | 5 | 12.287 | Pre-Intervention |
3 | 5 | 18 | 6 | 13.146 | Intervention |
3 | 5 | 18 | 7 | 11.694 | Intervention |
3 | 5 | 18 | 8 | 18.998 | Intervention |
3 | 5 | 18 | 9 | 16.125 | Intervention |
3 | 5 | 18 | 10 | 20.296 | Intervention |
3 | 5 | 18 | 11 | 21.905 | Intervention |
3 | 5 | 18 | 12 | 21.952 | Intervention |
3 | 5 | 18 | 13 | 27.114 | Intervention |
3 | 5 | 18 | 14 | 27.933 | Intervention |
3 | 5 | 18 | 15 | 27.448 | Intervention |
3 | 5 | 18 | 16 | 30.747 | Intervention |
3 | 5 | 18 | 17 | 36.685 | Intervention |
3 | 5 | 18 | 18 | 37.337 | Intervention |
3 | 5 | 18 | 19 | 39.197 | Intervention |
3 | 5 | 18 | 20 | 43.845 | Intervention |
3 | 5 | 18 | 21 | 44.752 | Intervention |
3 | 5 | 18 | 22 | 43.358 | Intervention |
3 | 5 | 18 | 23 | 46.341 | Intervention |
3 | 5 | 18 | 24 | 47.006 | Post-Intervention |
3 | 5 | 18 | 25 | 44.497 | Post-Intervention |
3 | 5 | 18 | 26 | 46.507 | Post-Intervention |
3 | 5 | 18 | 27 | 44.034 | Post-Intervention |
3 | 5 | 18 | 28 | 47.017 | Post-Intervention |
3 | 5 | 18 | 29 | 48.691 | Post-Intervention |
3 | 5 | 18 | 30 | 43.648 | Post-Intervention |
3 | 5 | 18 | 31 | 47.700 | Post-Intervention |
3 | 5 | 18 | 32 | 49.477 | Post-Intervention |
3 | 5 | 18 | 33 | 48.000 | Post-Intervention |
3 | 5 | 18 | 34 | 46.173 | Post-Intervention |
3 | 5 | 18 | 35 | 48.513 | Post-Intervention |
3 | 5 | 18 | 36 | 43.801 | Post-Intervention |
3 | 5 | 18 | 37 | 48.552 | Post-Intervention |
3 | 5 | 18 | 38 | 48.298 | Post-Intervention |
3 | 5 | 18 | 39 | 43.902 | Post-Intervention |
3 | 5 | 18 | 40 | 47.103 | Post-Intervention |
3 | 5 | 18 | 41 | 51.735 | Post-Intervention |
3 | 5 | 18 | 42 | 40.911 | Post-Intervention |
3 | 5 | 18 | 43 | 45.881 | Post-Intervention |
3 | 5 | 18 | 44 | 49.407 | Post-Intervention |
3 | 5 | 18 | 45 | 45.653 | Post-Intervention |
3 | 5 | 18 | 46 | 43.964 | Post-Intervention |
3 | 5 | 18 | 47 | 46.602 | Post-Intervention |
3 | 5 | 18 | 48 | 44.568 | Post-Intervention |
3 | 5 | 18 | 49 | 42.596 | Post-Intervention |
3 | 5 | 18 | 50 | 47.055 | Post-Intervention |
3 | 5 | 18 | 51 | 46.582 | Post-Intervention |
3 | 5 | 18 | 52 | 43.501 | Post-Intervention |
3 | 5 | 18 | 53 | 42.446 | Post-Intervention |
3 | 5 | 18 | 54 | 47.222 | Post-Intervention |
3 | 5 | 18 | 55 | 44.163 | Post-Intervention |
3 | 5 | 18 | 56 | 49.381 | Post-Intervention |
3 | 5 | 18 | 57 | 44.999 | Post-Intervention |
3 | 5 | 18 | 58 | 46.108 | Post-Intervention |
3 | 5 | 18 | 59 | 47.088 | Post-Intervention |
3 | 5 | 18 | 60 | 44.919 | Post-Intervention |
4 | 32 | 20 | 1 | 11.297 | Pre-Intervention |
4 | 32 | 20 | 2 | 14.307 | Pre-Intervention |
4 | 32 | 20 | 3 | 14.811 | Pre-Intervention |
4 | 32 | 20 | 4 | 8.678 | Pre-Intervention |
4 | 32 | 20 | 5 | 9.533 | Pre-Intervention |
4 | 32 | 20 | 6 | 7.823 | Pre-Intervention |
4 | 32 | 20 | 7 | 9.561 | Pre-Intervention |
4 | 32 | 20 | 8 | 8.209 | Pre-Intervention |
4 | 32 | 20 | 9 | 12.898 | Pre-Intervention |
4 | 32 | 20 | 10 | 8.244 | Pre-Intervention |
4 | 32 | 20 | 11 | 8.548 | Pre-Intervention |
4 | 32 | 20 | 12 | 8.616 | Pre-Intervention |
4 | 32 | 20 | 13 | 7.586 | Pre-Intervention |
4 | 32 | 20 | 14 | 8.921 | Pre-Intervention |
4 | 32 | 20 | 15 | 9.199 | Pre-Intervention |
4 | 32 | 20 | 16 | 8.711 | Pre-Intervention |
4 | 32 | 20 | 17 | 11.026 | Pre-Intervention |
4 | 32 | 20 | 18 | 10.804 | Pre-Intervention |
4 | 32 | 20 | 19 | 11.591 | Pre-Intervention |
4 | 32 | 20 | 20 | 10.519 | Pre-Intervention |
4 | 32 | 20 | 21 | 9.027 | Pre-Intervention |
4 | 32 | 20 | 22 | 7.848 | Pre-Intervention |
4 | 32 | 20 | 23 | 12.319 | Pre-Intervention |
4 | 32 | 20 | 24 | 10.068 | Pre-Intervention |
4 | 32 | 20 | 25 | 12.198 | Pre-Intervention |
4 | 32 | 20 | 26 | 7.872 | Pre-Intervention |
4 | 32 | 20 | 27 | 8.831 | Pre-Intervention |
4 | 32 | 20 | 28 | 10.432 | Pre-Intervention |
4 | 32 | 20 | 29 | 8.886 | Pre-Intervention |
4 | 32 | 20 | 30 | 8.553 | Pre-Intervention |
4 | 32 | 20 | 31 | 11.836 | Pre-Intervention |
4 | 32 | 20 | 32 | 7.608 | Pre-Intervention |
4 | 32 | 20 | 33 | 11.136 | Intervention |
4 | 32 | 20 | 34 | 13.533 | Intervention |
4 | 32 | 20 | 35 | 14.891 | Intervention |
4 | 32 | 20 | 36 | 19.392 | Intervention |
4 | 32 | 20 | 37 | 22.947 | Intervention |
4 | 32 | 20 | 38 | 23.988 | Intervention |
4 | 32 | 20 | 39 | 20.032 | Intervention |
4 | 32 | 20 | 40 | 27.083 | Intervention |
4 | 32 | 20 | 41 | 28.207 | Intervention |
4 | 32 | 20 | 42 | 27.317 | Intervention |
4 | 32 | 20 | 43 | 34.869 | Intervention |
4 | 32 | 20 | 44 | 33.646 | Intervention |
4 | 32 | 20 | 45 | 36.784 | Intervention |
4 | 32 | 20 | 46 | 37.477 | Intervention |
4 | 32 | 20 | 47 | 40.527 | Intervention |
4 | 32 | 20 | 48 | 41.814 | Intervention |
4 | 32 | 20 | 49 | 40.749 | Intervention |
4 | 32 | 20 | 50 | 45.507 | Intervention |
4 | 32 | 20 | 51 | 45.754 | Intervention |
4 | 32 | 20 | 52 | 47.572 | Intervention |
4 | 32 | 20 | 53 | 56.028 | Post-Intervention |
4 | 32 | 20 | 54 | 51.273 | Post-Intervention |
4 | 32 | 20 | 55 | 51.980 | Post-Intervention |
4 | 32 | 20 | 56 | 47.747 | Post-Intervention |
4 | 32 | 20 | 57 | 48.654 | Post-Intervention |
4 | 32 | 20 | 58 | 50.635 | Post-Intervention |
4 | 32 | 20 | 59 | 48.446 | Post-Intervention |
4 | 32 | 20 | 60 | 50.343 | Post-Intervention |
5 | 19 | 20 | 1 | 10.667 | Pre-Intervention |
5 | 19 | 20 | 2 | 6.804 | Pre-Intervention |
5 | 19 | 20 | 3 | 8.303 | Pre-Intervention |
5 | 19 | 20 | 4 | 14.498 | Pre-Intervention |
5 | 19 | 20 | 5 | 6.868 | Pre-Intervention |
5 | 19 | 20 | 6 | 12.367 | Pre-Intervention |
5 | 19 | 20 | 7 | 9.414 | Pre-Intervention |
5 | 19 | 20 | 8 | 9.444 | Pre-Intervention |
5 | 19 | 20 | 9 | 8.745 | Pre-Intervention |
5 | 19 | 20 | 10 | 14.305 | Pre-Intervention |
5 | 19 | 20 | 11 | 10.961 | Pre-Intervention |
5 | 19 | 20 | 12 | 10.451 | Pre-Intervention |
5 | 19 | 20 | 13 | 14.828 | Pre-Intervention |
5 | 19 | 20 | 14 | 6.272 | Pre-Intervention |
5 | 19 | 20 | 15 | 10.096 | Pre-Intervention |
5 | 19 | 20 | 16 | 12.403 | Pre-Intervention |
5 | 19 | 20 | 17 | 8.464 | Pre-Intervention |
5 | 19 | 20 | 18 | 8.629 | Pre-Intervention |
5 | 19 | 20 | 19 | 9.839 | Pre-Intervention |
5 | 19 | 20 | 20 | 14.449 | Intervention |
5 | 19 | 20 | 21 | 13.049 | Intervention |
5 | 19 | 20 | 22 | 16.131 | Intervention |
5 | 19 | 20 | 23 | 18.193 | Intervention |
5 | 19 | 20 | 24 | 17.921 | Intervention |
5 | 19 | 20 | 25 | 23.902 | Intervention |
5 | 19 | 20 | 26 | 22.576 | Intervention |
5 | 19 | 20 | 27 | 23.059 | Intervention |
5 | 19 | 20 | 28 | 25.573 | Intervention |
5 | 19 | 20 | 29 | 29.038 | Intervention |
5 | 19 | 20 | 30 | 31.427 | Intervention |
5 | 19 | 20 | 31 | 33.964 | Intervention |
5 | 19 | 20 | 32 | 36.342 | Intervention |
5 | 19 | 20 | 33 | 38.469 | Intervention |
5 | 19 | 20 | 34 | 41.438 | Intervention |
5 | 19 | 20 | 35 | 40.760 | Intervention |
5 | 19 | 20 | 36 | 44.753 | Intervention |
5 | 19 | 20 | 37 | 47.462 | Intervention |
5 | 19 | 20 | 38 | 48.816 | Intervention |
5 | 19 | 20 | 39 | 52.240 | Intervention |
5 | 19 | 20 | 40 | 50.288 | Post-Intervention |
5 | 19 | 20 | 41 | 51.077 | Post-Intervention |
5 | 19 | 20 | 42 | 48.519 | Post-Intervention |
5 | 19 | 20 | 43 | 51.011 | Post-Intervention |
5 | 19 | 20 | 44 | 49.589 | Post-Intervention |
5 | 19 | 20 | 45 | 50.637 | Post-Intervention |
5 | 19 | 20 | 46 | 47.937 | Post-Intervention |
5 | 19 | 20 | 47 | 45.461 | Post-Intervention |
5 | 19 | 20 | 48 | 52.178 | Post-Intervention |
5 | 19 | 20 | 49 | 48.010 | Post-Intervention |
5 | 19 | 20 | 50 | 47.008 | Post-Intervention |
5 | 19 | 20 | 51 | 50.800 | Post-Intervention |
5 | 19 | 20 | 52 | 47.707 | Post-Intervention |
5 | 19 | 20 | 53 | 54.898 | Post-Intervention |
5 | 19 | 20 | 54 | 49.207 | Post-Intervention |
5 | 19 | 20 | 55 | 52.968 | Post-Intervention |
5 | 19 | 20 | 56 | 51.581 | Post-Intervention |
5 | 19 | 20 | 57 | 47.745 | Post-Intervention |
5 | 19 | 20 | 58 | 53.559 | Post-Intervention |
5 | 19 | 20 | 59 | 48.210 | Post-Intervention |
5 | 19 | 20 | 60 | 50.766 | Post-Intervention |
6 | 24 | 20 | 1 | 13.027 | Pre-Intervention |
6 | 24 | 20 | 2 | 7.471 | Pre-Intervention |
6 | 24 | 20 | 3 | 13.680 | Pre-Intervention |
6 | 24 | 20 | 4 | 5.769 | Pre-Intervention |
6 | 24 | 20 | 5 | 10.789 | Pre-Intervention |
6 | 24 | 20 | 6 | 8.699 | Pre-Intervention |
6 | 24 | 20 | 7 | 9.323 | Pre-Intervention |
6 | 24 | 20 | 8 | 8.312 | Pre-Intervention |
6 | 24 | 20 | 9 | 12.865 | Pre-Intervention |
6 | 24 | 20 | 10 | 9.967 | Pre-Intervention |
6 | 24 | 20 | 11 | 6.926 | Pre-Intervention |
6 | 24 | 20 | 12 | 7.546 | Pre-Intervention |
6 | 24 | 20 | 13 | 10.175 | Pre-Intervention |
6 | 24 | 20 | 14 | 12.912 | Pre-Intervention |
6 | 24 | 20 | 15 | 5.829 | Pre-Intervention |
6 | 24 | 20 | 16 | 8.554 | Pre-Intervention |
6 | 24 | 20 | 17 | 10.514 | Pre-Intervention |
6 | 24 | 20 | 18 | 12.225 | Pre-Intervention |
6 | 24 | 20 | 19 | 9.299 | Pre-Intervention |
6 | 24 | 20 | 20 | 9.090 | Pre-Intervention |
6 | 24 | 20 | 21 | 9.931 | Pre-Intervention |
6 | 24 | 20 | 22 | 10.490 | Pre-Intervention |
6 | 24 | 20 | 23 | 12.348 | Pre-Intervention |
6 | 24 | 20 | 24 | 11.752 | Pre-Intervention |
6 | 24 | 20 | 25 | 10.447 | Intervention |
6 | 24 | 20 | 26 | 13.391 | Intervention |
6 | 24 | 20 | 27 | 16.231 | Intervention |
6 | 24 | 20 | 28 | 16.951 | Intervention |
6 | 24 | 20 | 29 | 21.799 | Intervention |
6 | 24 | 20 | 30 | 21.528 | Intervention |
6 | 24 | 20 | 31 | 21.879 | Intervention |
6 | 24 | 20 | 32 | 25.989 | Intervention |
6 | 24 | 20 | 33 | 26.665 | Intervention |
6 | 24 | 20 | 34 | 32.069 | Intervention |
6 | 24 | 20 | 35 | 32.795 | Intervention |
6 | 24 | 20 | 36 | 35.019 | Intervention |
6 | 24 | 20 | 37 | 37.480 | Intervention |
6 | 24 | 20 | 38 | 32.867 | Intervention |
6 | 24 | 20 | 39 | 35.365 | Intervention |
6 | 24 | 20 | 40 | 41.401 | Intervention |
6 | 24 | 20 | 41 | 46.800 | Intervention |
6 | 24 | 20 | 42 | 49.059 | Intervention |
6 | 24 | 20 | 43 | 46.944 | Intervention |
6 | 24 | 20 | 44 | 50.266 | Intervention |
6 | 24 | 20 | 45 | 54.224 | Post-Intervention |
6 | 24 | 20 | 46 | 50.032 | Post-Intervention |
6 | 24 | 20 | 47 | 51.803 | Post-Intervention |
6 | 24 | 20 | 48 | 49.742 | Post-Intervention |
6 | 24 | 20 | 49 | 48.780 | Post-Intervention |
6 | 24 | 20 | 50 | 48.083 | Post-Intervention |
6 | 24 | 20 | 51 | 48.620 | Post-Intervention |
6 | 24 | 20 | 52 | 48.069 | Post-Intervention |
6 | 24 | 20 | 53 | 48.062 | Post-Intervention |
6 | 24 | 20 | 54 | 46.871 | Post-Intervention |
6 | 24 | 20 | 55 | 50.262 | Post-Intervention |
6 | 24 | 20 | 56 | 44.337 | Post-Intervention |
6 | 24 | 20 | 57 | 51.324 | Post-Intervention |
6 | 24 | 20 | 58 | 48.036 | Post-Intervention |
6 | 24 | 20 | 59 | 54.790 | Post-Intervention |
6 | 24 | 20 | 60 | 48.737 | Post-Intervention |
7 | 10 | 19 | 1 | 9.695 | Pre-Intervention |
7 | 10 | 19 | 2 | 9.174 | Pre-Intervention |
7 | 10 | 19 | 3 | 10.637 | Pre-Intervention |
7 | 10 | 19 | 4 | 9.136 | Pre-Intervention |
7 | 10 | 19 | 5 | 7.362 | Pre-Intervention |
7 | 10 | 19 | 6 | 14.267 | Pre-Intervention |
7 | 10 | 19 | 7 | 9.448 | Pre-Intervention |
7 | 10 | 19 | 8 | 12.378 | Pre-Intervention |
7 | 10 | 19 | 9 | 6.093 | Pre-Intervention |
7 | 10 | 19 | 10 | 5.854 | Pre-Intervention |
7 | 10 | 19 | 11 | 9.539 | Intervention |
7 | 10 | 19 | 12 | 14.262 | Intervention |
7 | 10 | 19 | 13 | 13.727 | Intervention |
7 | 10 | 19 | 14 | 19.425 | Intervention |
7 | 10 | 19 | 15 | 20.669 | Intervention |
7 | 10 | 19 | 16 | 22.576 | Intervention |
7 | 10 | 19 | 17 | 26.741 | Intervention |
7 | 10 | 19 | 18 | 24.729 | Intervention |
7 | 10 | 19 | 19 | 28.852 | Intervention |
7 | 10 | 19 | 20 | 30.760 | Intervention |
7 | 10 | 19 | 21 | 31.628 | Intervention |
7 | 10 | 19 | 22 | 34.361 | Intervention |
7 | 10 | 19 | 23 | 36.095 | Intervention |
7 | 10 | 19 | 24 | 40.918 | Intervention |
7 | 10 | 19 | 25 | 39.432 | Intervention |
7 | 10 | 19 | 26 | 41.137 | Intervention |
7 | 10 | 19 | 27 | 43.049 | Intervention |
7 | 10 | 19 | 28 | 46.761 | Intervention |
7 | 10 | 19 | 29 | 46.199 | Intervention |
7 | 10 | 19 | 30 | 48.769 | Post-Intervention |
7 | 10 | 19 | 31 | 47.367 | Post-Intervention |
7 | 10 | 19 | 32 | 49.477 | Post-Intervention |
7 | 10 | 19 | 33 | 52.471 | Post-Intervention |
7 | 10 | 19 | 34 | 49.366 | Post-Intervention |
7 | 10 | 19 | 35 | 44.544 | Post-Intervention |
7 | 10 | 19 | 36 | 48.075 | Post-Intervention |
7 | 10 | 19 | 37 | 46.384 | Post-Intervention |
7 | 10 | 19 | 38 | 47.661 | Post-Intervention |
7 | 10 | 19 | 39 | 45.355 | Post-Intervention |
7 | 10 | 19 | 40 | 49.098 | Post-Intervention |
7 | 10 | 19 | 41 | 48.016 | Post-Intervention |
7 | 10 | 19 | 42 | 47.499 | Post-Intervention |
7 | 10 | 19 | 43 | 49.154 | Post-Intervention |
7 | 10 | 19 | 44 | 48.998 | Post-Intervention |
7 | 10 | 19 | 45 | 47.308 | Post-Intervention |
7 | 10 | 19 | 46 | 46.442 | Post-Intervention |
7 | 10 | 19 | 47 | 49.660 | Post-Intervention |
7 | 10 | 19 | 48 | 48.067 | Post-Intervention |
7 | 10 | 19 | 49 | 46.288 | Post-Intervention |
7 | 10 | 19 | 50 | 45.444 | Post-Intervention |
7 | 10 | 19 | 51 | 48.753 | Post-Intervention |
7 | 10 | 19 | 52 | 49.891 | Post-Intervention |
7 | 10 | 19 | 53 | 49.418 | Post-Intervention |
7 | 10 | 19 | 54 | 47.998 | Post-Intervention |
7 | 10 | 19 | 55 | 50.407 | Post-Intervention |
7 | 10 | 19 | 56 | 46.834 | Post-Intervention |
7 | 10 | 19 | 57 | 46.451 | Post-Intervention |
7 | 10 | 19 | 58 | 48.048 | Post-Intervention |
7 | 10 | 19 | 59 | 48.951 | Post-Intervention |
7 | 10 | 19 | 60 | 52.757 | Post-Intervention |
8 | 13 | 20 | 1 | 10.596 | Pre-Intervention |
8 | 13 | 20 | 2 | 11.746 | Pre-Intervention |
8 | 13 | 20 | 3 | 10.903 | Pre-Intervention |
8 | 13 | 20 | 4 | 11.403 | Pre-Intervention |
8 | 13 | 20 | 5 | 8.263 | Pre-Intervention |
8 | 13 | 20 | 6 | 7.589 | Pre-Intervention |
8 | 13 | 20 | 7 | 8.232 | Pre-Intervention |
8 | 13 | 20 | 8 | 7.295 | Pre-Intervention |
8 | 13 | 20 | 9 | 10.028 | Pre-Intervention |
8 | 13 | 20 | 10 | 10.105 | Pre-Intervention |
8 | 13 | 20 | 11 | 9.797 | Pre-Intervention |
8 | 13 | 20 | 12 | 11.889 | Pre-Intervention |
8 | 13 | 20 | 13 | 7.041 | Pre-Intervention |
8 | 13 | 20 | 14 | 12.705 | Intervention |
8 | 13 | 20 | 15 | 13.626 | Intervention |
8 | 13 | 20 | 16 | 14.990 | Intervention |
8 | 13 | 20 | 17 | 19.614 | Intervention |
8 | 13 | 20 | 18 | 23.575 | Intervention |
8 | 13 | 20 | 19 | 22.594 | Intervention |
8 | 13 | 20 | 20 | 25.971 | Intervention |
8 | 13 | 20 | 21 | 26.860 | Intervention |
8 | 13 | 20 | 22 | 30.064 | Intervention |
8 | 13 | 20 | 23 | 29.586 | Intervention |
8 | 13 | 20 | 24 | 31.227 | Intervention |
8 | 13 | 20 | 25 | 34.261 | Intervention |
8 | 13 | 20 | 26 | 36.188 | Intervention |
8 | 13 | 20 | 27 | 38.330 | Intervention |
8 | 13 | 20 | 28 | 42.613 | Intervention |
8 | 13 | 20 | 29 | 43.275 | Intervention |
8 | 13 | 20 | 30 | 42.504 | Intervention |
8 | 13 | 20 | 31 | 42.509 | Intervention |
8 | 13 | 20 | 32 | 51.437 | Intervention |
8 | 13 | 20 | 33 | 53.725 | Intervention |
8 | 13 | 20 | 34 | 50.306 | Post-Intervention |
8 | 13 | 20 | 35 | 48.788 | Post-Intervention |
8 | 13 | 20 | 36 | 51.408 | Post-Intervention |
8 | 13 | 20 | 37 | 53.231 | Post-Intervention |
8 | 13 | 20 | 38 | 50.961 | Post-Intervention |
8 | 13 | 20 | 39 | 53.231 | Post-Intervention |
8 | 13 | 20 | 40 | 48.398 | Post-Intervention |
8 | 13 | 20 | 41 | 48.722 | Post-Intervention |
8 | 13 | 20 | 42 | 50.481 | Post-Intervention |
8 | 13 | 20 | 43 | 51.476 | Post-Intervention |
8 | 13 | 20 | 44 | 50.614 | Post-Intervention |
8 | 13 | 20 | 45 | 48.026 | Post-Intervention |
8 | 13 | 20 | 46 | 50.541 | Post-Intervention |
8 | 13 | 20 | 47 | 50.111 | Post-Intervention |
8 | 13 | 20 | 48 | 49.685 | Post-Intervention |
8 | 13 | 20 | 49 | 50.818 | Post-Intervention |
8 | 13 | 20 | 50 | 45.583 | Post-Intervention |
8 | 13 | 20 | 51 | 50.140 | Post-Intervention |
8 | 13 | 20 | 52 | 49.661 | Post-Intervention |
8 | 13 | 20 | 53 | 47.786 | Post-Intervention |
8 | 13 | 20 | 54 | 49.989 | Post-Intervention |
8 | 13 | 20 | 55 | 52.467 | Post-Intervention |
8 | 13 | 20 | 56 | 50.677 | Post-Intervention |
8 | 13 | 20 | 57 | 49.147 | Post-Intervention |
8 | 13 | 20 | 58 | 51.386 | Post-Intervention |
8 | 13 | 20 | 59 | 47.671 | Post-Intervention |
8 | 13 | 20 | 60 | 50.322 | Post-Intervention |
Plot the results:
Plotting is rarely done all at once. We usually build it step-by-step and layer-by-layer. Here is the first attempt:
%>%
d_longer ggplot(aes(time, on_task)) +
geom_line(aes(group = id, color = phase))
That was not so great! Let’s make a separate plot for each person:
%>%
d_longer ggplot(aes(time, on_task)) +
geom_line(aes(group = id, color = phase)) +
facet_grid(rows = vars(id))
Better! Let’s reorder the cases by the order in which the intervention is first implemented:
%>%
d_longer mutate(id = fct_reorder(factor(id), baseline_sessions_n)) %>%
ggplot(aes(time, on_task)) +
geom_line(aes(group = id, color = phase)) +
facet_grid(rows = vars(id))
Looks even better!
If I wanted a more polished plot for publication, I might create something like Figure 1.
Code
# Some pre-processing for easier plotting
<- d_longer %>%
d_longer_processed mutate(id = factor(id) %>% fct_reorder(baseline_sessions_n),
phase = fct_inorder(phase)) %>%
arrange(phase) %>%
mutate(id = factor(id, labels = LETTERS[1:8]))
# data for phase rectangles
<- d_longer_processed %>%
d_phases summarise(.by = c(id, phase),
begin = min(time),
end = max(time)) %>%
mutate(begin = ifelse(begin == 1, 0, begin),
end = end + 1)
%>%
d_longer_processed ggplot(aes(time, on_task)) +
geom_vline(xintercept = rep(1:4, 12) + rep(seq(0,55,5), each = 4), linewidth = unit(.1, "mm"), color = "gray80") +
::geom_richtext(
ggtextdata = . %>% filter(id == "E", time %in% c(10, 30, 50)),
aes(label = phase, color = phase),
label.color = NA,
fill = scales::alpha("white", .5),
label.padding = unit(0, "mm"),
label.margin = unit(2, "mm"),
vjust = c(0, 0, 1),
angle = c(0, 21, 0),
size = 5.5,
family = "Roboto Condensed"
+
) geom_rect(
data = d_phases,
aes(
xmin = begin,
xmax = end,
ymin = 0,
ymax = 60,
fill = phase
),inherit.aes = FALSE
+
) geom_line(aes(group = id, color = phase), linewidth = 1) +
facet_grid(rows = vars(id)) +
theme(strip.text.y = element_text(angle = 0),
legend.position = "none") +
labs(x = "Day", y = "Time on Task") +
theme_light(base_family = "Roboto Condensed", base_size = 18) +
theme(legend.position = "none",
panel.border = element_blank(),
strip.text.y = element_text(angle = 0),
axis.text.y = element_text(vjust = c(0))) +
scale_color_viridis_d(alpha = .9, begin = .1, end = .7) +
scale_fill_viridis_d(alpha = .15, begin = .1, end = .7) +
scale_y_continuous(
limits = c(0, 60),
breaks = seq(0, 50, 10),
expand = expansion(0)
+
) scale_x_continuous(limits = c(0, 61), breaks = seq(0, 60, 10), minor_breaks = seq(0,60, 5), expand = expansion(0)) +
guides(
x = guide_axis(minor.ticks = TRUE)
# y = guide_axis(minor.ticks = TRUE)
+
) coord_cartesian(clip = "off")